
Mémo Robotique, Asservissements et Arduino

Justin CANO,
élève en M.Sc.A. à l’École Polytechnique de Montréal,

Département de Génie Électrique
École Centrale de Marseille – Promo ent. 2014

- ♦♦♦ -

28 mars 2017

Comment construire de α à ω un asservissement en vitesse d’un
moteur pour la robotique ?

Hypothèse : Vous ne disposez que :

1. d’une carte Arduino,

2. d’un moteur à courant continu avec encodeurs,

3. de sa carte de contrôle,

4. d’un ordinateur avec Matlab ou Scilab,

5. du présent document !

i

Table des matières

1 Avant-propos 1
1.1 Mot de l’auteur . 1
1.2 Objectifs du mémo . 1

2 Modélisation d’un moteur à courant continu 1
2.1 Modèle du moteur . 1

2.1.1 Équations physiques temporelles . 1
2.1.2 Équations physiques dans le domaine de Laplace 2

2.2 Modélisez votre moteur grâce à une fonction de transfert 3
2.2.1 Mesurer la vitesse ? . 3
2.2.2 Identification des paramètres . 5

3 Conception du contrôleur 6
3.1 Stratégie employée . 6
3.2 Rappels : Théorie de la conception dans le plan S . 6

3.2.1 Notions de pôles et de zéros . 6
3.2.2 Notations employées . 7
3.2.3 Propriétés du système en fonction des pôles 7
3.2.4 Une figure résumé . 8

3.3 Méthode pour une conception directe dans le plan S : 9
3.4 Architecture globale du système . 10
3.5 Calcul des coefficients du correcteur en temps continu C(s) 10
3.6 Environnement MatLab . 11

4 Implémentation dans le système avec Arduino 12
4.1 Éléments de théorie : Asservissements Numériques 12

4.1.1 Signal échantillonné . 12
4.1.2 Transformation en Z . 12
4.1.3 Quelques subtilités par rapport aux asservissements continus classiques . . . 13

4.2 Discrétisation de l’équation à l’aide de MATLAB . 15
4.2.1 Code MATLAB . 15
4.2.2 Explications à propos du précédent code . 15
4.2.3 Résultats obtenus avec mes valeurs : . 16

4.3 Création de l’équation aux différences du contrôleur C(z) 17
4.4 Implémentation sous Arduino . 17

5 Références 21

ii

Table des figures

1 Acquisition expérimentale de la vitesse et identification des paramètres. 5
2 Le plan S - Figure résumé . 8
3 Résumé de la géométrie que doivent respecter les pôles en boucle fermée. On notera

que la conception est symétrique suivant l’axe des réels car les pôles sont dans notre
cas toujours complexes conjugués. 9

4 Architecture globale du système en continu. Nous noterons que tout se passera dans
l’Arduino excepté la fonction F(s) . 10

5 Signal continu et échantillonné par BOZ avec une période de 0.5s 12
6 Exemple de discrétisation de signal continu à différentes périodes 14
7 Réponse continue . 18
8 Réponse discrétisée. 18

iii

1 Avant-propos

1.1 Mot de l’auteur

Avant d’étudier en Génie Électrique à Polytechnique Montréal, j’ai été membre du Club de
Robotique de Centrale Marseille. Je me suis donc naturellement confronté au présent problème
et il est clair que celui-ci est crucial. En effet, on ne mâıtrise pas les frottements lorsqu’on fait
rouler par exemple des robots et il faut à tout prix asservir ce dernier si on veut le diriger de
manière la plus précise qu’il soit. Je vous souhaite donc une bonne lecture, en espérant que le
présent papier sera utile pour vos réalisations. À noter qu’il il est disponible sur le site du wiki du
FabLab Marseille : https://wiki.centrale-marseille.fr/fablab et sur mes pages personnelles
https://jcano.perso.centrale-marseille.fr, http://justincano.com .

Je précise que ce texte est libre de droits, à condition de le citer, et que son écriture provient
de mon expérience personnelle en électronique que j’ai acquise à Centrale et Polytechnique. Veuillez
donc m’adresser toute remarque relative à son contenu à l’adresse suivante : cano.justin [at]

gmail.com.
Ce papier n’est évidemment pas un cours d’automatique mais il a la seule prétention d’aider
l’électronicien désirant asservir un moteur à courant continu. Ce concept est évidemment généralisable
à tout système physique à condition de le modéliser convenablement à l’aide d’une fonction de trans-
fert d’ordre peu élevé (1 ou 2), pour l’ordre 2, il faut évidemment revoir la méthode que je présente
surtout dans les illustrations (je traite en exemple un cas du premier ordre) mais la démarche à
entreprendre est identique.

1.2 Objectifs du mémo

1. Modéliser un moteur à courant continu en automatique

2. Quelques rappels d’automatique linéaire appliqués à ce problème

3. Corriger le système, comment le faire mathématiquement

4. Implémentation sous un microcontrôleur Arduino du présent algorithme

2 Modélisation d’un moteur à courant continu

Avant toute chose, il faut donner un sens physique au problème que l’on s’apprête à étudier. En
effet, mieux vaut connâıtre ce que l’on veut réguler avant de tenter tout calcul hâtif.

2.1 Modèle du moteur

2.1.1 Équations physiques temporelles

Un moteur est régi par des équations différentielles physiques, on va essayer de les combiner
pour obtenir la vitesse, en fonction de la commande (la tension au bornes du moteur).
Notations :

— ω(t) : vitesse de sortie du moteur ;
— C(t) : couple fourni par le moteur ;
— ı(t) : intensité traversant le bobinage du moteur ;
— L,R, e : Inductance, résistance et force contre-électromotrice du moteur ;
— J, f : Moment d’inertie et coefficient de frottement cinétique du moteur .

1

https://wiki.centrale-marseille.fr/fablab
https://jcano.perso.centrale-marseille.fr
http://justincano.com

Modélisation des perturbations : On supposera que la commande U est en fait la vraie ten-
sion physiquement appliquée à ses bornes Uphy moins une tension ”fictive” qui modélisera notre
perturbation extérieure Up (exemple les frottements).

u(t) = uphy(t)− up(t) (1)

Équation électrique Un moteur est un dipôle RLE électriquement donc :

u(t) = L
di

dt
+Ri(t) + e, τe =

L

R
(2)

e est la force contre électromotrice induite du moteur (on fait tourner des spires dans un champ,
cela provoque de l’induction d’où l’apparition d’un potentiel contre-électromoteur).

Équations magnétique On peut démontrer, dans le cas des moteurs à courant continus pourvus
d’aimant permanent la relations suivantes :

e(t) = Φω(t) (3)

C(t) = Φi(t) (4)

Ou Φ est la constante d’induction du moteur et s’exprime en Weber

Équation mécanique : Le théorème du moment cinétique nous donne l’équation qui suit :

J
dω

dt
= −fω(t) + C(t), τm =

J

f
(5)

2.1.2 Équations physiques dans le domaine de Laplace

Comme nous sommes en automatique et qui plus est en commande classique, nous allons donc
créer un modèle en transformée de Laplace. Je noterais s la variable de Laplace 1 et on supposera
que toutes les fonctions respectent les conditions d’Heavyside c’est à dire que toutes les conditions
initiales sont nulles. On a donc l’ensemble d’équations suivantes, notre but est de trouver la fonction
de transfert qui relie u et ω :

U(s) = (τes+ 1)RI(s) + e = (τes+ 1)
R

Φ
C(s) + ΦΩ(s)

= (τes+ 1)(τms+ 1)
Rf

Φ
Ω(s) + ΦΩ(s). (6)

⇔ Ω(s)

U(s)
=

1

(τes+ 1)(τms+ 1)RfΦ + Φ
=

Φ
Rf

τeτms2 + (τe + τm)s+ Φ2

Rf

. (7)

Or, en pratique la constante de temps électrique τe est négligée par rapport à τm. En effet, une
résistance de quelques dizaines d’ohm et une inductance ne dépassant pas le milihenri ne peuvent
pas rivaliser avec l’inertie mécanique. En plus, en robotique on utilise des motoréducteurs et des
roues ce qui l’augmente de surcroit. On peut donc simplement écrire la fonction de transfert de
notre bloc physique représentant le moteur comme suit :

1. En sachant qu’en France c’est p mais je suis parti à l’étranger entre temps.

2

F (s) =
Ω(s)

U(s)
=

Km

sτ + 1
, avec τ =

τmRf

Φ2
,K =

1

Φ

C’est un système premier ordre avec constante de temps τm et gain statique Km à identifier. Il
s’agit du modèle physique sans perturbations, toutes les étapes se font donc avec le moteur plus les
roues tournant dans le vide (si vous modifiez les roues vous modifiez l’inertie et donc la constante
de temps ! !).

2.2 Modélisez votre moteur grâce à une fonction de transfert

Pour réguler un système, il est de bon goût de savoir à quoi il ressemble numériquement : il faut
donc trouver le couple K, τ voici une méthode (parmi d’autres) permettant de le faire :

2.2.1 Mesurer la vitesse ?

Afin d’asservir votre robot, vous allez utiliser des capteurs angulaires tels que des encodeurs
ou des capteurs à effet Hall. Ces capteurs sont actifs donc nécessitent une alimentation pour leur
bon fonctionnement. J’insiste, ces derniers sont angulaires, c’est à dire qu’il faut donner une valeur
approchée de leur dérivée pour donner la vitesse angulaire. Deux fronts montants (ou ticks) en sortie
du capteur signifie qu’une rotation de 2π/a a eu lieu a étant un entier non-nul et généralement
relativement grand, par exemple : a = 100ticsk/tour . Pour estimer la vitesse il vous suffit de
compter le nombre de tours Nticks(t)

T durant une période T donnée (vous la fixez ex : T = 20ms)
et appliquer la formule suivante :

ω(t) ≈ 1

a× T
×Nticks(t)

T (8)

3

Je donne ici une fonction en langage Arduino permettant de faire ce travail :

1 const i n t p i n a c q u i s i t i o n = 12 ;
const i n t pin moteur = 3 ;

3 s t a t i c i n t temps absolu ;
s t a t i c i n t per i ode = 20 ;

5 s t a t i c i n t a = 120 ;

7 void setup () {
S e r i a l . begin (9600) ;

9 pinMode (p i n a c q u i s i t i o n , INPUT) ;
pinMode (pin moteur ,OUTPUT) ;

11 }

13 f l o a t mesureVitesse () {
d i g i t a l W r i t e (pin moteur ,HIGH) ;

15 // l a PIN 3 e s t a r e l i e r a l ’ en t r e e du montage a m p l i f i c a t e u r
// (pont en H) al imentant l e moteur

17 temps absolu = m i l l i s () ; // l e temps abso lu au debut de l ’ a c q u i s i t i o n
i n t t i c k s=0 ;

19 boolean b ;
whi l e (m i l l i s ()−temps absolu<per iode) { //on mesure l e s t i c k s pendant T

21 b = dig i ta lRead (p i n a c q u i s i t i o n) ;
de layMicroseconds (20) ;

23 i f (b==0 && dig i ta lRead (p i n a c q u i s i t i o n)==1) { // d e t e c t i o n d ’ un f r o n t montant
t i c k s ++;

25 }
}

27 f l o a t v i t e s s e = (f l o a t) t i c k s ∗6000/(a∗ per iode) ; // conver s i on de l a v i t e s s e
re turn v i t e s s e ;

29 }

31

void loop () {
33 S e r i a l . p r i n t l n (mesureVitesse ()) ; // a f f i c h a g e de l a v i t e s s e toute s l e s 20 ms

S e r i a l . p r i n t (m i l l i s ()) ; // a f f i c h a g e du temps en ms
35 }

Initialisation : On suppose que la lecture se fait sur la pin 12 de l’Arduino. On règle la période
T = 20ms et on suppose que le capteur nous donne 120 fronts montants par tour a = 120. On
initialise la liaison USB sérielle qui nous renverra nos valeurs, la pin 12 est configurée en entrée.

Routine : La fonction mesureVitesse() est constituée d’une boucle qui détecte les fronts mon-
tants (et donc le nombre d’impulsion par seconde retournée par le capteur. On incrémente le comp-
teur à chaque front montant. Une fois la période de comptage écoulée, on applique la formule
ci-haut qui nous donne la vitesse en tours/minute. Cette fonction est dans la fonction loop() et
donc s’exécutera jusqu’à ce qu’on l’arrête. Je suggère de stopper l’acquisition en régime permanent
c’est à dire si les valeurs semblent plus trop évoluer. Après, il suffit de faire l’identification qui suit :

Il nous suffit de récupérer le flux de données provenant du câble sériel de l’Arduino (Cf. http:
//wiki.centrale-marseille/fablab) en copiant directement le contenu du terminal, afin de
procéder au tracé de la courbe. Un logiciel de tableur tel que OpenOfficeCalc ou encore Scilab

peut faire l’affaire pour séparer les valeurs du temps avec celle de la vitesse. Parvenus ici, tracer la

4

http://wiki.centrale-marseille/fablab
http://wiki.centrale-marseille/fablab

Figure 1 – Acquisition expérimentale de la vitesse et identification des paramètres.

courbe de vitesse en fonction du temps ne devrait pas poser de soucis, on devrait obtenir un résultat
analogue à la figure 1.

2.2.2 Identification des paramètres

Comme nous le montre la figure 1, la réponse indicielle du moteur nous montre généralement
qu’elle peut être assimilable à une réponse d’un système du premier ordre soumis à un échelon E.
C’est à dire une fonction temporelle du type :

ω(t) = E ×K × (1− e−t/τ)

On sait que pour un échelon, c’est à dire une mise à une certaine tension E à une valeur donnée, le
système tendra vers une valeur asymptotique valant :

ωmax = ω(∞) = K × E

Dans notre cas précis, dans la figure 1, on a, si l’échelon vaut E = 10V :

K =
ωmax
E
≈ 400

10
= 40 min−1.V−1

On sait de plus que :
ω(τ) = K × E × (1− e−1) ≈ 0.63ωmax

Ce qui permet d’identifier graphiquement τ sur l’axe des abscisses : ici τ ≈ 0.3 en secondes. Les
constructions nécessaires à ces considérations sont sur la figure 1.

5

3 Conception du contrôleur

De multiples contrôleurs existent dans le monde de l’Automatique. On se donne un petit ca-
hier des charges qui peut correspondre à une application en robotique, afin de se donner quelques
contraintes que l’on respectera par la suite.

— On veut un temps de réponse 2 à 5 % T5 ≤ 0.5s. Le moteur a une demi-seconde pour répondre
quelle que soit sa valeur.

— On voudrait également éviter les trop grands dépassements 3 , c’est à dire que le pourcentage
de dépassement (Overshot) soit tel que Pos ≤ 5

— Il ne faut pas faire saturer l’alimentation du système . 4.
— Bien entendu, il faut que le système soit stable.

3.1 Stratégie employée

Nous allons diviser en plusieurs étapes cette conception :

1. Conception en temps continu du système
— Création du modèle sous Matlab

— Ajustement en simulation avec l’outil pidtool (option)

2. Discrétisation du système
— Transformée en Z du contrôleur sous Matlab

— Obtention de l’équation aux récurrences

3. implémentation en C++ de l’algorithme sur Arduino

3.2 Rappels : Théorie de la conception dans le plan S

Je vous conseille de lire un quelconque polycopié de cours si vous n’avez jamais traité ce sujet.
L’objectif du présent papier n’étant pas un cours généraliste mais quelques éléments théoriques pour
mieux comprendre le problème d’asservissement numérique d’un premier ordre.

3.2.1 Notions de pôles et de zéros

Dans le domaine de Laplace, les fonctions de transfert des systèmes continus et invariants peuvent
s’écrire sous forme de fonction de transfert comme suit :

H(s) =
N(s)

D(s)

Où N,D sont des polynômes en s.

Pôle : Les pôles sont les valeurs de s pour lesquelles D(s) = 0.

Zéro : Les pôles sont les valeurs de s pour lesquelles N(s) = 0.

2. Le temps de réponse à cinq pourcent est le temps de réponse au bout duquel pour un signal de sortie d’un
système stable (au sens convergeant vers une valeur de sortie, voir la section 3.2) y(t) convergeant vers une valeur
y(∞) respecte l’inégalité 0.9 ∗ y(∞) ≤ y(t) ≤ 1.05y(∞).

3. On ne veut pas que le moteur accélère et décélère trop fortement ce qui risquerait d’endommager le robot sur
lequel il est implémenté.

4. Si la commande dépasse sa valeur maximale qui est la tension de ses batteries, le système devient non-linéaire
et donc les hypothèses de calcul que l’on va poser vont devenir fausses.

6

Note : Toutes les valeurs ici sont complexes ! Il existe autant de racines fois leur multiplicité que
les degrés des polynômes précédents.

3.2.2 Notations employées

On notera respectivement :
— pi les pôles du système.
— zi les zéros du système.

3.2.3 Propriétés du système en fonction des pôles

Note : Pour mieux comprendre les pôles et leur propriété, j’ai fait une petite feuille de ”révision”
présente sur mon site personnel http://jcano.perso.ec-m.fr

Stabilité : On veut que le système après correction soit stable tout d’abord. Ceci est assuré par
la relation suivante à respecter pour tous les pôles :

Re(pi) < 0⇔ système stable

Interdiction de déroger à cette règle, sinon on ne contrôle plus rien. Donc on placera les pôles dans
le demi-plan gauche du plan de Laplace.

Oscillations : Dans le plan complexe de Laplace, on peut définir les coordonnées de pôles (x, y)
cartésiennes comme étant les suivantes :

pi = x+ jy = σ + jω j2 = −1

On peut également, comme pour toute géométrie du Plan, définir des coordonnées polaires (ω0, θ)
et il se trouve que thêta est directement lié au caractère oscillatoire des pôles. En effet, on peut
définir le facteur d’amortissement ξ d’une fonction de transfert du deuxième ordre 5 comme suit :

H(s) =
Y (s)

R(s)
=

K
1
ω2
0
s2 + 2ξ

ω0
s+ 1

(9)

Y (s) est la sortie du système et R(s) la référence à poursuivre.
Mais ce fameux facteur d’amortissement est lié (voir la section 3.2.4) directement à l’angle polaire
θ. En effet on pose :

cos(θ) = ξ (10)

De plus,on a la relation suivante entre le facteur d’amortissement ξ et le pourcentage de dépassement
maximum POS .

ξ = ln

(
100

POS

)
× 1√

π2 + ln2
(

100
POS

) (11)

5. On tente toujours de se ramener à un deuxième ordre à pôles complexes conjugués dans la conception de systèmes
asservis dans le plan S. Bien que cela nécessite des approximations.

7

http://jcano.perso.ec-m.fr

Rapidité La rapidité d’un système est donnée par la relation approximative suivante 6 :

T5 ≈
3

ω0ξ
(12)

Généralement, on dit que le temps de réponse d’un système est inversement proportionnel à l’opposé
de la partie réelle de ses pôles. On négligera les pôles dits rapides face aux pôles dits lents (ce
qu’on a fait dans la section 2.1.2, pour la constante de temps électrique beaucoup plus rapide
que la mécanique, ce qui a permis de créer notre fonction du premier ordre dits rapide), c’est
la notion de dominance des pôles.

Précision L’erreur à l’infini d’un système est caractérisée par : ess = y(∞)−r(∞). Si le correcteur
implémente un intégrateur (ce qui est notre cas) on peut prouver qu’elle est nulle à l’infini pour
poursuivre un échelon 7 de référence ou rejeter un échelon de perturbation. On poursuit parfaitement
les échelons : quoi de mieux pour notre robot ?

3.2.4 Une figure résumé

Oui, ceci est dans mes compétences d’illustrateur ! Voilà notre plan S, on notera le passage de
coordonnées cartésiennes à polaires dans le présent plan pour un système du deuxième ordre tel que
décrit par l’équation 9.

Figure 2 – Le plan S - Figure résumé

6. En supposant que ξ < 0.9.
7. Un échelon UE(t) d’amplitude E est une fonction telle que UE(t) = E pour t ≥ 0 ou UE(t) = 0 sinon.

8

3.3 Méthode pour une conception directe dans le plan S :

On cherchera donc à placer des pôles en boucle fermée tels que défini à la figure 2. On va
chercher à faire en boucle fermée un deuxième ordre approché qui aurait deux pôles dominants tels
que (traduction des contraintes du cahier des charges) :

POS ≤ 5⇔ ξ ≥ 0.69 (13)

On choisit ξ = 0.707 =
√

2
2 = cos(θ) qui a le bon gout de respecter l’inéquation précédente et qui

correspond à un angle de θ = 45 deg et qui de plus impose que les parties réelles et imaginaires
des pôles sont égales.. Voyons la contrainte de rapidité maintenant :

T5 ≤ 0.5s⇔ 3

ω0ξ
≤ 0.5 (14)

Or, −Re(Pi) = ξω par définition, voir la figure 2. On va se placer à la limite de cette frontière, définie
par l’équation 14, car rappelons nous-le, créer des pôles rapide peut faire saturer la commande ce
que l’on doit à tout prix éviter. On a donc :

Re(pi) = −3/0.5 = −6 (15)

On va donc chercher à placer les deux pôles en boucle fermée tels que :

p1 = −6 + 6j p2 = −6− 6j (16)

Figure 3 – Résumé de la géométrie que doivent respecter les pôles en boucle fermée. On notera
que la conception est symétrique suivant l’axe des réels car les pôles sont dans notre cas toujours
complexes conjugués.

Pour réaliser ceci il suffit de concevoir un compensateur de la façon suivante :
— On doit placer deux pôles situés à −6± 6j, par exemple. 8

— Pour garantir la précision un intégrateur, rendant le système de classe 1, devra être présent
au sein du compensateur.

— Un zéro indésirable sera introduit par la dans notre contrôleur : nous négligerons dans une
première approche sa présence (voir section 3.5).

8. De manière générale il s’agit de placer deux pôles respectant la géométrie proposée à la figure 3.

9

Figure 4 – Architecture globale du système en continu. Nous noterons que tout se passera dans
l’Arduino excepté la fonction F(s)

3.4 Architecture globale du système

Nous alors pour cela concevoir un contrôleur proportionnel-intégral afin de réguler au mieux
toutes les perturbations modélisées par l’entrée du signal P (s), la référence que l’on cherche à
poursuivre étant R(s) et la sortie étant Y (s).

Fonction de transfert du système global en boucle fermée :

H(s) =
F (s)C(s)

1 + F (s)C(s)
=

K
τs+1(Kp + Ki

s)

1 + K
τs+1(Kp + Ki

s)
(17)

Problématique : La question est... comment faire ? Comment régler le triplet Kp,Kd,Ki effica-
cement ? Comment l’implémenter dans une carte Arduino en C++ ?

3.5 Calcul des coefficients du correcteur en temps continu C(s)

On va tout d’abord essayer de calculer les coefficients comme si le système était un deuxième
ordre pur. On connait grâce aux développements faits dans la section 2.2.2 les valeurs de K et τ .
De plus, on peut écrire :

H(s) =
KKp(s+ Ki

Kp
)

s2 +
1+KKp

τ s+ KKi
τ

(18)

Mais, grâce aux développements de la section 3.3 on connait les pôles que l’on veut, le dénominateur
de l’expression 18 doit être égal à :

D(s) = (s− p1)(s− p2) = (s+ 6 + 6j)(s+ 6− 6j) = s2 + 12s+ 72

Nous avons donc deux équations et deux inconnus en identifiant les coefficients au dénominateur...
formidable !

D(s) = s2 +
1 +KKp

τ
s+

KKi

τ

On fait l’identification en prenant les valeurs suivantes (comme dans mon exemple) K = 40 τ = 0.3

12 =
1 +KKp

τ
⇔ Kp =

12τ − 1

K
≈ 0.065

72 =
KKi

τ
⇔ Ki =

72τ

K
≈ 0.54

10

Par ailleurs, le zéro vaut : z1 = −Ki/Kp ≈ −8.3, ce dernier va perturber le régime transitoire
quelque peu pour le dépassement. Il faudra vérifier que ce dernier ne soit pas déraisonnable.

3.6 Environnement MatLab

Vous pouvez utiliser le logiciel Simulink, dépendance de Matlab 9 en vue de vérifier la réponse
du système en continu. En fait, il faut regarder ce qu’il se passe en sortie du système pour bien
visualiser le tout. On regardera ce qui se passe en sortie du bloc C(s) également. Si vous avez fait
votre identification avec une source de 12 V il faudra veiller à ce que cette sortie ne s’approche pas
trop du voltage max. On risque d’obtenir des saturations sinon et cela est problématique pour la
dynamique du système.

On entrera les paramètres directement dans l’invite de commande ou dans un script MATLAB
ce qui aura pour résultat le stockage dans l’espace de travail de ces variables. Par exemple :

K = 200;

tau = 0.3;

... etc

On pourra se servir de la figure 5 pour faire ceci. À noter que je donne un script résumé de la
conception complète complet sous Matlab à la section 4.2. Ce dernier n’utilise pas Simulink mais
rentre le modèle analytique directement.

Note : On peut également utiliser la fonction MatLab pidtool(F) pour régler le gain du contrôleur,
F étant ici la représentation de la fonction F (s) en fonction de transfert sous MatLab (Transfer func-
tion) . On ne passe pas par les formules et le résultat est plus immédiat, par contre, cet outil n’existe
que dans MatLab depuis la version 2010b.

9. D’une manière analogue, on peux utiliser le freeware Scilab avec son logiciel de simulation XCos avec la palette
(bibliothèque) CPGE, installable par l’outil de gestion des modules ATOMS

11

4 Implémentation dans le système avec Arduino

Maintenant, passons des milieux continus aux milieux échantillonnés puisque le microcontrôleur
Arduino en est un.

4.1 Éléments de théorie : Asservissements Numériques

4.1.1 Signal échantillonné

En asservissement numérique, on échantillonne les signaux avec une période d’échantillonnage
Te. Le signal est mesuré au départ de chaque période puis, la valeur est bloquée jusqu’à un nouvel
échantillonnage :

Ue(t) = Ue(nTe) t ∈ [nTe, (n+ 1)Te]

Cette méthode est appelée Bloqueur d’Ordre Zéro (ou BOZ)

Figure 5 – Signal continu et échantillonné par BOZ avec une période de 0.5s

4.1.2 Transformation en Z

Une transformée en Z d’un signal causal x(n) La transformée en Z est pour les systèmes
échantillonnés ce que la transformée de Laplace est aux systèmes continus.

Définition mathématique : Pour tout système causal, elle vaut :

Z(u(nTe)) = U(z) =
∑
n∈N

u(nTe)× z−n z ∈ C (19)

Nous nous focaliserons pas sur toutes ses propriétés mais seulement celles qui sont utiles dans notre
cas précis. Des livres et tout un pan de l’automatique traitant du sujet, je ne donne ici que des
éléments pour mieux comprendre.

12

4.1.3 Quelques subtilités par rapport aux asservissements continus classiques

Stabilité : Le critère de Cauchy sur les séries entières s’applique ici. Un système est stable si et
seulement si ses pôles (valeurs critiques) appartiennent au cercle unitaire. Autrement dit :

|pi| < 1

Il faudra faire attention de vérifier que les pôles se trouvent bien dans cette région en concevant le
système sur MatLab. Si le système diverge, il faudra sans doute concevoir un système plus robuste
en continu, voire échantillonner plus pour s’approcher du système précédemment conçu. Il faut être
prudent, même un premier ordre peut devenir instable si il est bouclé avec des gains inadéquats !

Théorème de Shannon : Pour garantir une bonne période d’échantillonnage, par ce biais une
bonne stabilité en utilisant une approche tendant à ressembler à la conception en continu, on doit
respecter le critère suivant :
Les pôles en boucle fermée en continu doivent appartenir à une bande B du plan S de Laplace
définie comme suit :

B t.q. ∀pi ∈ B, −ωe
2
< =(pi) <

ωe
2

Avec ωe, pulsation d’échantillonnage, relié à la période d’échantillonnage par la relation :

ωe =
2π

Te

Si on ne respecte pas ceci, des complications peuvent apparaitre :
— On peut sous-échantillonner le système et ainsi fausser complètement le système en temps

discret. On perd de l’information si la fréquence d’échantillonnage ne vaut pas strictement
plus du double de la fréquence caractéristique la plus élevée du système :

Pas de pertes⇔ fe > 2×max(fpole)

— Le signal ainsi produit ne correspond pas à ce qui se passe réellement dans le système amenant
des erreurs de précisions ou pire : des instabilités.

13

Exemple : Un système F (s) = 1
s2+1

oscillateur harmonique de fréquence fpole = 1. On l’échantillonne

à Te = 1/fe = 4 on obtient F4(z) = 1.654z+1.654
z2+1.307z+1

(ne respecte pas le théorème de Shannon) et pour

fe = 3⇔ Te ≈ 0.33 on obtient F0.33(z) = 0.05396z+0.05396
z2−1.892z+1

(respecte le théorème) ceci nous donne la
figure 6 suivante pour la réponse à un échelon.

Figure 6 – Exemple de discrétisation de signal continu à différentes périodes

Note : les périodes sont en adéquation ou non avec Shannon. La courbe pour Te = 4 met en
valeur un système clairement sous-échantillonné : on est plus capable de voir la sinusöıde à la

bonne fréquence.

Théorème du retard : Soit un signal u(n), la transformée d’un signal retardé de k fois le temps
d’échantillonnage en Z vaut :

Z(u(n− kTe)) = z−kZ(u(n))

C’est pour cela que l’on utilise la transformée en Z, on peut déterminer une équation de récurrence
facilement à partir de cette dernière

14

4.2 Discrétisation de l’équation à l’aide de MATLAB

4.2.1 Code MATLAB

On devra ainsi utiliser la fonction c2d afin de transformer les valeurs de la fonction de transfert
continue du correcteur en fonction de transfert discrète en Z. On pourra utiliser le script MATLAB
suivant :

% Parametres du moteur

K = 40;

tau = 0.3;

%Coefficients du polynome des poles choisis D = (s-p1)(s-p2)

a1 = 12;

a0 = 72;

Kp = (a1*tau - 1)/K;

Ki = (a0*tau)/K;

%Création des fonctions de transfert en continu

s = tf(’s’);

F = K/(s*tau + 1)

C = (s*Kp + Ki)/s

H = (C*F)/(1+C*F);

Rejet = -0.05*F/(1+C*F);

%Simulation temporelle en continu du systeme en BF (poursuite et rejet)

step(H, Rejet); %On poursuit un échelon unitaire et on rejette -5% de sa valeur

%discrétisation du contrôleur

Ts = 0.05;

C_e = c2d(C,Ts)

F_e = c2d(F,Ts);

% Vérification de la stabilité

figure

H_e = (C_e*F_e)/(1+C_e*F_e);

step(H_e)

4.2.2 Explications à propos du précédent code

1. On entre les bons paramètres (et pas ceux de MON exemple) du système identifié à la
section 2.

2. On calcule les gains du contrôleur PI :
— On connait les pôles choisis (ici pi = −6 ± 6j) et donc les coefficients du polynôme

caractéristique (dénominateur de la fonction de transfert en boucle fermée)
— On peut donc, connaissant le système en boucle fermée, déterminer (ki, kp) facilement

pour placer les pôles au bon endroit (identification sur les coefficients du dénominateur
de la fonction de transfert).

15

3. On calcule les fonctions de transferts en continu du système (correcteur et système phy-
sique 10).
— La fonction Matlab tf() (Transfer Function) permet de définir le symbole s comme étant

la variable de Laplace.
— Ensuite, on construit à l’aide de fractions rationnelles les différentes fonctions de transfert

dont on a besoin.
— On testera avec la fonction step() les réponses à des échelons de référence unitaire.
— On testera également le rejet d’une perturbation de cinq pourcent par le PI (frottements

arrivant d’un coup sur le robot, par exemple : traversée brutale d’une bande rugueuse).

4. On a choisi comme temps d’échantillonnage 11 Te = Ts = 50ms (ajustable) car on estime
la mesure de vitesse suffisamment précise sur ce laps de temps. Mais cela dépend de votre
capteur, si votre acquisition à la section 2 était trop bruité, il faudrait l’augmenter mais gare
au sous-échantillonnage car il peut vous jouer des tours en terme de robustesse. Il faudra, le
cas échéant alors modifier les pôles pour avoir un système plus lent mais plus robuste. On
conçoit le système en discret car notre mesure en vitesse est discrète, une nouvelle
mesure n’est disponible que toutes les 50ms, c’est le cœur du problème.

5. On discrétise le système en utilisant la fonction c2d() (continuous to discrete) en renseignant
le temps d’échantillonnage 12. La transformée en Z de la fonction devrait s’afficher sur l’invite
de commande Matlab (absence de point virgule en Matlab impliquant affichage).

6. Une dernière simulation est effectuée, on trace la réponse indicielle de la fonction de transfert
discrétisée en boucle fermée pour s’assurer qu’elle est stable, si elle ne diverge pas, on peut
donc garder ces valeurs. Sinon, il faut soit augmenter Te soit trouver des pôles plus robustes
en continu.

Note importante : Pour avoir de l’aide sur les syntaxes des fonctions Matlab il suffit de taper sur
l’invite de commande help maFonction.

4.2.3 Résultats obtenus avec mes valeurs :

En faisant simplement tourner le script précédent, on obtient :

Sur l’invite de commande

F =

40

0.3 s + 1

Continuous-time transfer function.

C =

10. Non nécessaire pour le système physique mais je préconise une simulation de son comportement pour vérifier
sa stabilité. Donc il y a besoin de connaitre F (s) pour calculer la fonction du système en boucle fermée.

11. Sampling Time en anglais.
12. Rappel : une transformée en Z d’un même système continu est en général différente avec deux temps

d’échantillonnage différents.

16

0.065 s + 0.54

s

Continuous-time transfer function.

C_e =

0.065 z - 0.038

z - 1

Sample time: 0.05 seconds

Discrete-time transfer function.

Ceci signifie que la fonction de transfert de mon correcteur en Z, avec Te = 50ms vaut Ce(z) =
0.065z−0.038

z−1 .
Simulations du système en boucle fermée : elles sont présentes aux figures 7 et 8.

4.3 Création de l’équation aux différences du contrôleur C(z)

L’étape est toute simple, nous disposons déjà de la transformée en Z. Il faut procéder ainsi :

1. Normaliser par z−k, k étant le degré le plus élevé du polynôme du dénominateur, de manière
à n’obtenir que des zi avec i des entiers négatifs.

2. Séparer entrée et sortie.

3. Transformer en inverse en appliquant le théorème du retard.

4. Isoler U(n)

Exemple : Pour notre système, on a :

Ce(z) =
U(z)

E(z)
=

0.065z − 0.038

z − 1
=

0.065− 0.038z−1

1− z−1

On a donc l’équation :
U(z)(1− z−1) = E(z)(0.065− 0.038z−1)

Le théorème du retard nous donne (la transformée en Z étant linéaire) :

U(n)− U(n− Te) = 0.065E(n)− 0.038E(n− Te)

Une équation de récurrence peut donc être trouvée en notant les signaux comme suit : Xn−k =
X(n− kTe)

Un = Un−1 + 0.065En − 0.038En−1

4.4 Implémentation sous Arduino

Pour implémenter cette fonction, la difficulté réside dans le fait de l’implémenter sur une sortie
PWM de l’Arduino (voir l’explication plus complète sur http://wiki.centrale-marseille.fr/fablab).
En effet, le PWM (Power Wave Modulation) délivre des carrés entre 0 et 5V à une fréquence
d’environ 490Hz.

17

http://wiki.centrale-marseille.fr

Figure 7 – Réponse continue
Note : Suivi en bleu, rejet d’un échelon de 5 pour cent en orange. Les performances sont celles

fixées par le placement des pôles.

Figure 8 – Réponse discrétisée.

Note : Le système converge et a le bon goût de conserver les performances désirées en suivi.

18

En Arduino, pour faire ceci, on a la fonction analogWrite(pin,value), le premier argument
pin est un entier représentant la pin à utiliser. Pour une Arduino UNO, les sorties équipées du
PWM à 490Hz sont les suivantes : 3, 5, 6, 9, 10, et 11. On notera que les pins 5 et 6 supportent
également le PWM mais à 980Hz, on utilisera ces dernières. Pour les autres cartes, vérifiez avec la
datasheet sur le site officiel d’Arduino pour savoir quelles pin prendre.

Tension moyenne du PWM : Le deuxième argument, value est codé sur 8 bits et est directe-
ment relié à la tension de moyenne de sortie de l’Arduino. On a fait l’identification du moteur avec
comme entrée directement la sortie de l’arduino donc :

u =
value

255
⇔ value = 255× u

En supposant que value est entre 0 et 255 si ce n’est pas le cas, il faut faire saturer value
sinon on risque d’envoyer une tension erronée. Exemple 256 = 0x100 sera interprété comme
0x00 = 0 et donnera une tension de 0V en sortie !

19

http://arduino.cc

Code Arduino : On reprend la routine précédente plus quelques modifications :

1 const i n t p i n a c q u i s i t i o n = 12 ;
const i n t pin moteur = 5 ; // on branche l e moteur sur l a PIN 5

3 s t a t i c i n t temps absolu ;
const i n t per i ode = 50 ; // 50 ms = Te (par exemple)

5 const i n t a = 120 ;
f l o a t v ; // v i t e s s e

7 f l o a t e ; f l o a t e1= 0 ; f l o a t u=0 ; f l o a t u1=0 ;
// e (n) , e (n−1) , u (n) , u (n−1)

9 f l o a t cons = 42.314 ; // cons igne (par exemple)

11 void setup () {
S e r i a l . begin (9600) ;

13 pinMode (p i n a c q u i s i t i o n , INPUT) ;
pinMode (pin moteur ,OUTPUT) ;

15 }

17 f l o a t mesureVitesse () {
d i g i t a l W r i t e (pin moteur ,HIGH) ;

19 // l a PIN 3 e s t a r e l i e r a l ’ en t r e e du montage a m p l i f i c a t e u r
// (pont en H) al imentant l e moteur

21 temps absolu = m i l l i s () ; // l e temps abso lu au debut de l ’ a c q u i s i t i o n
i n t t i c k s=0 ;

23 boolean b ;
whi l e (m i l l i s ()−temps absolu<per iode) { //on mesure l e s t i c k s pendant T

25 b = dig i ta lRead (p i n a c q u i s i t i o n) ;
de layMicroseconds (20) ;

27 i f (b==0 && dig i ta lRead (p i n a c q u i s i t i o n)==1) { // d e t e c t i o n d ’ un f r o n t montant
t i c k s ++;

29 }
}

31 f l o a t v i t e s s e = (f l o a t) t i c k s ∗6000/(a∗ per iode) ; // conver s i on de l a v i t e s s e
re turn v i t e s s e ;

33 }
void c o r r e c t i o n (f l o a t v i t e s s e , f l o a t cons igne) {

35 f l o a t e = v i t e s s e − cons igne ; // comparateur
u = u1 + 0.065∗e − 0.038∗e1 ; // equat ion de r e cu r r ence

37 i n t va lue = (i n t)u∗255 ; // conver s i on sur 8 b i t s
va lue = c o n s t r a i n (value , 0 ,255) ; // s a t u r a t i o n s i on s o r t des 8 b i t s

39 d i g i t a l W r i t e (pin moteur , va lue) ;
u1 = u ; e1 = e ; // memorisation des anc iennes va l eu r s

41 }
void loop () {

43 v = mesureVitesse () ;
// S e r i a l . p r i n t l n (v) ; // a f f i c h a g e de l a v i t e s s e toute s l e s 50 ms

45 // S e r i a l . p r i n t (m i l l i s ()) ; // a f f i c h a g e du temps en ms (debug et t e s t)
c o r r e c t i o n (v , cons) ; // a p p l i c a t i o n de votre c o n t r o l e u r (temps d execut ion n e g l i g e)

47 }

Pour deux moteurs sur la même carte : Recommencez l’étude pour le deuxième moteur et implémentez
la deuxième acquisition de vitesse en même temps que la première, doublez vos variables, vous pou-
vez faire l’hypothèse que votre processeur sera assez rapide pour gérer ces deux choses à la fois...

20

5 Références

— Kilidjian, A., Cours d’asservissements numériques, option de 2A à l’ECM, 2015.
— Guchuan, Z., Cours d’asservissements numériques, Polytechnique Montréal, ELE 8200,

2017.
— Moudgalya, K.M., Digital Control, éd Willey, 2007.
— Jazzar, C., Cours de C/C++, option de 2A à l’ECM, 2015.
— http://wiki.centrale-marseille.fr/fablab, Cano, J. , Salles, P.

Wiki du FabLab Marseille, page de la théorie Arduino, 2014, rév 2017.
— http://arduino.cc, Site officiel d’Arduino, rév 2017.

21

http://wiki.centrale-marseille.fr/fablab
http://arduino.cc

	Avant-propos
	Mot de l'auteur
	Objectifs du mémo

	Modélisation d'un moteur à courant continu
	Modèle du moteur
	Équations physiques temporelles
	Équations physiques dans le domaine de Laplace

	Modélisez votre moteur grâce à une fonction de transfert
	Mesurer la vitesse ?
	Identification des paramètres

	Conception du contrôleur
	Stratégie employée
	Rappels : Théorie de la conception dans le plan S
	Notions de pôles et de zéros
	Notations employées
	Propriétés du système en fonction des pôles
	Une figure résumé

	Méthode pour une conception directe dans le plan S :
	Architecture globale du système
	Calcul des coefficients du correcteur en temps continu C(s)
	Environnement MatLab

	Implémentation dans le système avec Arduino
	Éléments de théorie : Asservissements Numériques
	Signal échantillonné
	Transformation en Z
	Quelques subtilités par rapport aux asservissements continus classiques

	Discrétisation de l'équation à l'aide de MATLAB
	Code MATLAB
	Explications à propos du précédent code
	Résultats obtenus avec mes valeurs :

	Création de l'équation aux différences du contrôleur C(z)
	Implémentation sous Arduino

	Références

