MEMO ROBOTIQUE, ASSERVISSEMENTS ET ARDUINO

Justin CANO,
éleve en M.Sc.A. A I'Ecole Polytechnique de Montréal,
Département de Génie Electrique
Ecole Centrale de Marseille — Promo ent. 2014

- OO0 -
28 mars 2017

Comment construire de o a w un asservissement en vitesse d’un
moteur pour la robotique ?

Hypothese : Vous ne disposez que :

d’une carte Arduino,
d’un moteur a courant continu avec encodeurs,
de sa carte de controéle,

d’un ordinateur avec Matlab ou Scilab,

Ol b W N =

du présent document !

Table des matieres

1 Avant-propos

1.1
1.2

Mot de Pauteur
Objectifs du mémo e

2 Modélisation d’un moteur a courant continu

2.1

2.2

Modele du moteur e e e e e
2.1.1 Equations physiques temporelles Lo oL
2.1.2 Equations physiques dans le domaine de Laplace
Modélisez votre moteur grace a une fonction de transfert
2.2.1 Mesurer la vitesse?o
2.2.2 Identification des parametres

3 Conception du contréleur

3.1
3.2

3.3
3.4
3.5
3.6

Stratégie employée L. e
Rappels : Théorie de la conception dans le plan S
3.2.1 Notions de poles et de zéros
3.2.2 Notations employées Lo
3.2.3 Propriétés du systeme en fonction des poles L.
3.2.4 Une figure résumeé Lo e
Méthode pour une conception directe dansle plan S:
Architecture globale du systeme
Calcul des coefficients du correcteur en temps continu C(s)
Environnement MatLab Lo

4 Implémentation dans le systéme avec Arduino

4.1

4.2

4.3
4.4

Eléments de théorie : Asservissements Numériques
4.1.1 Signal échantillonné o oo
4.1.2 Transformationen Z e
4.1.3 Quelques subtilités par rapport aux asservissements continus classiques . .

Discrétisation de I’équation a I'aide de MATLAB
4.2.1 Code MATLAB e
4.2.2 Explications a propos du précédent code
4.2.3 Résultats obtenus avec mes valeurs : Lo
Création de I’équation aux différences du controleur C(z)
Implémentation sous Arduino

5 Références

ii

—_

UL W W N = = =

© 00 IO OO

Table des figures

[\

0 3 & Ot

Acquisition expérimentale de la vitesse et identification des parametres.
Le plan S - Figure résumé
Résumé de la géométrie que doivent respecter les poles en boucle fermée. On notera
que la conception est symétrique suivant ’axe des réels car les poles sont dans notre
cas toujours complexes CONJUGUES. v v v v v v i e e e e e e e
Architecture globale du systéme en continu. Nous noterons que tout se passera dans
PArduino excepté la fonction F(s)o o
Signal continu et échantillonné par BOZ avec une période de 0.5s
Exemple de discrétisation de signal continu a différentes périodes
Réponse continue L
Réponse discrétisée. L L e

iii

1 Avant-propos

1.1 Mot de I'auteur

Avant d’étudier en Génie Electrique a Polytechnique Montréal, j’ai été membre du Club de
Robotique de Centrale Marseille. Je me suis donc naturellement confronté au présent probléeme
et il est clair que celui-ci est crucial. En effet, on ne maitrise pas les frottements lorsqu’on fait
rouler par exemple des robots et il faut a tout prix asservir ce dernier si on veut le diriger de
maniere la plus précise qu’il soit. Je vous souhaite donc une bonne lecture, en espérant que le
présent papier sera utile pour vos réalisations. A noter qu’il il est disponible sur le site du wiki du
FabLab Marseille : https://wiki.centrale-marseille.fr/fablab et sur mes pages personnelles
https://jcano.perso.centrale-marseille.fr, http://justincano.com .

Je précise que ce texte est libre de droits, a condition de le citer, et que son écriture provient
de mon expérience personnelle en électronique que j’ai acquise a Centrale et Polytechnique. Veuillez
donc m’adresser toute remarque relative a son contenu a l’adresse suivante : cano.justin [at]
gmail.com.

Ce papier n’est évidemment pas un cours d’automatique mais il a la seule prétention d’aider
I’électronicien désirant asservir un moteur a courant continu. Ce concept est évidemment généralisable
a tout systeme physique a condition de le modéliser convenablement a 1’aide d’une fonction de trans-
fert d’ordre peu élevé (1 ou 2), pour lordre 2, il faut évidemment revoir la méthode que je présente
surtout dans les illustrations (je traite en exemple un cas du premier ordre) mais la démarche a

entreprendre est identique.

1.2 Objectifs du mémo

1. Modéliser un moteur a courant continu en automatique

2. Quelques rappels d’automatique linéaire appliqués a ce probleme
3. Corriger le systeme, comment le faire mathématiquement
4

. Implémentation sous un microcontréleur Arduino du présent algorithme

2 Modélisation d’un moteur a courant continu

Avant toute chose, il faut donner un sens physique au probléeme que I'on s’appréte a étudier. En
effet, mieux vaut connaitre ce que ’on veut réguler avant de tenter tout calcul hatif.

2.1 Modéle du moteur

2.1.1 Equations physiques temporelles

Un moteur est régi par des équations différentielles physiques, on va essayer de les combiner
pour obtenir la vitesse, en fonction de la commande (la tension au bornes du moteur).
Notations :

— w(t) : vitesse de sortie du moteur;

— C(t) : couple fourni par le moteur;

— 1(t) : intensité traversant le bobinage du moteur ;

— L, R, e : Inductance, résistance et force contre-électromotrice du moteur ;

— J, f : Moment d’inertie et coefficient de frottement cinétique du moteur .

https://wiki.centrale-marseille.fr/fablab
https://jcano.perso.centrale-marseille.fr
http://justincano.com

Modélisation des perturbations : On supposera que la commande U est en fait la vraie ten-
sion physiquement appliquée a ses bornes Upy, moins une tension "fictive” qui modélisera notre
perturbation extérieure U, (exemple les frottements).

u(t) = tpny () — up(t) (1)

Equation électrique Un moteur est un dipéle RLE électriquement donc :

di , L
U(t) = L% + Rl(t) + €, Te = E (2)
e est la force contre électromotrice induite du moteur (on fait tourner des spires dans un champ,

cela provoque de I'induction d’out apparition d’un potentiel contre-électromoteur).

Equations magnétique On peut démontrer, dans le cas des moteurs a courant continus pourvus
d’aimant permanent la relations suivantes :

Ou ® est la constante d’induction du moteur et s’exprime en Weber

Equation mécanique : Le théoreme du moment cinétique nous donne 1’équation qui suit :

J% = —fwlt) + O(t), T = ‘; (5)

Comme nous sommes en automatique et qui plus est en commande classique, nous allons donc
créer un modele en transformée de Laplace. Je noterais s la variable de Laplace! et on supposera
que toutes les fonctions respectent les conditions d’Heavyside c’est a dire que toutes les conditions
initiales sont nulles. On a donc ’ensemble d’équations suivantes, notre but est de trouver la fonction
de transfert qui relie u et w :

U(s) = (105 + DRI(s) + € = (705 + 1)%0(3) + 0(s)

= (7o + (s + 1) 2 0(s) + BOs). (6)

(03]
Q(s) 1 RS

U(s) (Tes + 1)(Tims + 1)% + & TS+ (Te + Tim)s + %'

(7)

Or, en pratique la constante de temps électrique 7. est négligée par rapport a 7,,. En effet, une
résistance de quelques dizaines d’ohm et une inductance ne dépassant pas le milihenri ne peuvent
pas rivaliser avec l'inertie mécanique. En plus, en robotique on utilise des motoréducteurs et des
roues ce qui 'augmente de surcroit. On peut donc simplement écrire la fonction de transfert de
notre bloc physique représentant le moteur comme suit :

1. En sachant qu’en France c’est p mais je suis parti a I’étranger entre temps.

_ Q(s) _ K, TmRf _ 1

C’est un systeme premier ordre avec constante de temps 7, et gain statique K,, a identifier. Il
s’agit du modele physique sans perturbations, toutes les étapes se font donc avec le moteur plus les
roues tournant dans le vide (si vous modifiez les roues vous modifiez l'inertie et donc la constante
de temps!!).

2.2 Modélisez votre moteur grace a une fonction de transfert

Pour réguler un systeme, il est de bon gotlit de savoir a quoi il ressemble numériquement : il faut
donc trouver le couple K, 7 voici une méthode (parmi d’autres) permettant de le faire :

Afin d’asservir votre robot, vous allez utiliser des capteurs angulaires tels que des encodeurs
ou des capteurs a effet Hall. Ces capteurs sont actifs donc nécessitent une alimentation pour leur
bon fonctionnement. J’'insiste, ces derniers sont angulaires, c’est a dire qu’il faut donner une valeur
approchée de leur dérivée pour donner la vitesse angulaire. Deux fronts montants (ou ticks) en sortie
du capteur signifie qu'une rotation de 27/a a eu lieu a étant un entier non-nul et généralement
relativement grand, par exemple : a = 100ticsk/tour . Pour estimer la vitesse il vous suffit de
compter le nombre de tours Nyers(t)? durant une période 7' donnée (vous la fixez ex : T = 20ms)
et appliquer la formule suivante :

w(t) ~ X Nijcks ()T (8)

~

13

19

23

Je donne ici une fonction en langage Arduino permettant de faire ce travail :

const int pin_acquisition = 12;
const int pin_moteur = 3;
static int temps_absolu;

static int periode = 20;

static int a = 120;

void setup (){
Serial.begin (9600);
pinMode (pin_-acquisition ,INPUT);
pinMode (pin_moteur ,OUTPUT) ;

}

float mesureVitesse () {
digitalWrite (pin-moteur ,HIGH) ;
//la PIN 3 est a relier a l’entree du montage amplificateur
//(pont en H) alimentant le moteur
temps_absolu = millis(); // le temps absolu au debut de 1’acquisition
int ticks=0;
boolean b;
while (millis ()—temps_absolu<periode){ //on mesure les ticks pendant T
b = digitalRead (pin_acquisition);
delayMicroseconds (20) ;
if (b==0 && digitalRead (pin_acquisition)==1){ // detection d’un front montant
ticks++;
}
}
float vitesse = (float) ticks%6000/(axperiode); // conversion de la vitesse
return vitesse;

void loop () {
Serial.println (mesureVitesse()); // affichage de la vitesse toutes les 20 ms
Serial.print (millis()); // affichage du temps en ms

Initialisation : On suppose que la lecture se fait sur la pin 12 de I’Arduino. On regle la période
T = 20ms et on suppose que le capteur nous donne 120 fronts montants par tour ¢ = 120. On
initialise la liaison USB sérielle qui nous renverra nos valeurs, la pin 12 est configurée en entrée.

Routine : La fonction mesureVitesse () est constituée d’une boucle qui détecte les fronts mon-
tants (et donc le nombre d’impulsion par seconde retournée par le capteur. On incrémente le comp-
teur & chaque front montant. Une fois la période de comptage écoulée, on applique la formule
ci-haut qui nous donne la vitesse en tours/minute. Cette fonction est dans la fonction loop() et
donc s’exécutera jusqu’'a ce qu’on 'arréte. Je suggere de stopper 'acquisition en régime permanent
c’est & dire si les valeurs semblent plus trop évoluer. Apres, il suffit de faire 'identification qui suit :

I nous suffit de récupérer le flux de données provenant du cable sériel de I’Arduino (Cf. http:
//wiki.centrale-marseille/fablab) en copiant directement le contenu du terminal, afin de
procéder au tracé de la courbe. Un logiciel de tableur tel que OpenOfficeCalc ou encore Scilab
peut faire ’affaire pour séparer les valeurs du temps avec celle de la vitesse. Parvenus ici, tracer la

http://wiki.centrale-marseille/fablab
http://wiki.centrale-marseille/fablab

450 Valeurs expérimentales de la vitesse de rotation
T T T

Asymptote = 400 tours/min

400 =

350 —

0.63Asymptote

250 = —

200 —

Vitesse en tours/minutes

00— -

1 1 1 1 1
0
0 500 1000 1500 2000 2500 3000

Temps en millisecondes

FIGURE 1 — Acquisition expérimentale de la vitesse et identification des parametres.

courbe de vitesse en fonction du temps ne devrait pas poser de soucis, on devrait obtenir un résultat
analogue a la figure 1.

Comme nous le montre la figure 1, la réponse indicielle du moteur nous montre généralement
qu’elle peut étre assimilable & une réponse d’un systéme du premier ordre soumis a un échelon F.
C’est a dire une fonction temporelle du type :

w(t)=Ex K x (1 —e /)

On sait que pour un échelon, c’est & dire une mise a une certaine tension F a une valeur donnée, le
systeme tendra vers une valeur asymptotique valant :

Wimaz = w(o0) = K X E

Dans notre cas précis, dans la figure 1, on a, si I’échelon vaut £ = 10V :

400
K= “’Tg” ~ 5 =40 min V!

On sait de plus que :
wt) =K x Ex (1-e1) ~0.63wmnae

Ce qui permet d’identifier graphiquement 7 sur ’axe des abscisses : ici 7 ~ 0.3 en secondes. Les
constructions nécessaires a ces considérations sont sur la figure 1.

3 Conception du controleur

De multiples controleurs existent dans le monde de I’Automatique. On se donne un petit ca-
hier des charges qui peut correspondre a une application en robotique, afin de se donner quelques
contraintes que 1’on respectera par la suite.

— On veut un temps de réponse” 4 5 % T5 < 0.5s. Le moteur a une demi-seconde pour répondre

quelle que soit sa valeur.

— On voudrait également éviter les trop grands dépassements® , c’est & dire que le pourcentage

de dépassement (Ouvershot) soit tel que P,s <5

— 11 ne faut pas faire saturer I'alimentation du systeme . *.

— Bien entendu, il faut que le systeme soit stable.

3.1 Stratégie employée

Nous allons diviser en plusieurs étapes cette conception :

1. Conception en temps continu du systeme
— Création du modele sous Matlab
— Ajustement en simulation avec I'outil pidtool (option)

2. Discrétisation du systeme
— Transformée en Z du controleur sous Matlab
— Obtention de I’équation aux récurrences

3. implémentation en C++ de I'algorithme sur Arduino

3.2 Rappels : Théorie de la conception dans le plan S

Je vous conseille de lire un quelconque polycopié de cours si vous n’avez jamais traité ce sujet.
L’objectif du présent papier n’étant pas un cours généraliste mais quelques éléments théoriques pour
mieux comprendre le probleme d’asservissement numérique d’'un premier ordre.

3.2.1 Notions de podles et de zéros

Dans le domaine de Laplace, les fonctions de transfert des systémes continus et invariants peuvent
s’écrire sous forme de fonction de transfert comme suit :
N(s)
D(s)

H(s) =
Ou N, D sont des polynomes en s.
Pole : Les poles sont les valeurs de s pour lesquelles D(s) = 0.

Zéro : Les poles sont les valeurs de s pour lesquelles N(s) = 0.

2. Le temps de réponse a cinq pourcent est le temps de réponse au bout duquel pour un signal de sortie d’un
systéme stable (au sens convergeant vers une valeur de sortie, voir la section 3.2) y(t) convergeant vers une valeur
y(o0) respecte I'inégalité 0.9 x y(o0) < y(t) < 1.05y(c0).

3. On ne veut pas que le moteur accélere et décélere trop fortement ce qui risquerait d’endommager le robot sur
lequel il est implémenté.

4. Si la commande dépasse sa valeur maximale qui est la tension de ses batteries, le systéme devient non-linéaire
et donc les hypotheses de calcul que I'on va poser vont devenir fausses.

Note : Toutes les valeurs ici sont complexes! Il existe autant de racines fois leur multiplicité que
les degrés des polyndémes précédents.

On notera respectivement :
— p; les poles du systeme.
— z; les zéros du systeme.

Note : Pour mieux comprendre les pOles et leur propriété, j’ai fait une petite feuille de ”"révision”
présente sur mon site personnel http://jcano.perso.ec-m.fr

Stabilité : On veut que le systeme apres correction soit stable tout d’abord. Ceci est assuré par
la relation suivante a respecter pour tous les poles :

Re(p;) < 0 < systeme stable

Interdiction de déroger a cette regle, sinon on ne controle plus rien. Donc on placera les poles dans
le demi-plan gauche du plan de Laplace.

Oscillations : Dans le plan complexe de Laplace, on peut définir les coordonnées de poles (z,y)
cartésiennes comme étant les suivantes :

pi=xtjy=oc+jw jP=-1

On peut également, comme pour toute géométrie du Plan, définir des coordonnées polaires (wy,)

et il se trouve que théta est directement lié au caractere oscillatoire des poles. En effet, on peut

définir le facteur d’amortissement £ d’une fonction de transfert du deuxiéme ordre” comme suit :
Y (s) K

H(s) = = 9
S TS R)
0

Y (s) est la sortie du systeme et R(s) la référence a poursuivre.
Mais ce fameux facteur d’amortissement est lié (voir la section 3.2.4) directement a I’angle polaire
0. En effet on pose :

cos(0) = ¢ (10)

De plus,on a la relation suivante entre le facteur d’amortissement £ et le pourcentage de dépassement

§_1n<100 1

X
Pos) \/7# +In? (F2)

maximum Ppg.

(11)

Pos

5. On tente toujours de se ramener & un deuxieme ordre a poles complexes conjugués dans la conception de systemes
asservis dans le plan S. Bien que cela nécessite des approximations.

http://jcano.perso.ec-m.fr

Rapidité La rapidité d’un systéme est donnée par la relation approximative suivante© :

Ty~ o (12)

Généralement, on dit que le temps de réponse d’un systeme est inversement proportionnel a I’opposé
de la partie réelle de ses poles. On négligera les poles dits rapides face aux poles dits lents (ce
qu’on a fait dans la section 2.1.2, pour la constante de temps électrique beaucoup plus rapide
que la mécanique, ce qui a permis de créer notre fonction du premier ordre dits rapide), c’est
la notion de dominance des poles.

Précision L’erreur a l'infini d’un systeéme est caractérisée par : ess = y(00) —r(00). Si le correcteur
implémente un intégrateur (ce qui est notre cas) on peut prouver qu’elle est nulle a l'infini pour
poursuivre un échelon ” de référence ou rejeter un échelon de perturbation. On poursuit parfaitement
les échelons : quoi de mieux pour notre robot ?

Oui, ceci est dans mes compétences d’illustrateur! Voila notre plan S, on notera le passage de
coordonnées cartésiennes a polaires dans le présent plan pour un systeme du deuxieme ordre tel que
décrit par ’équation 9.

2.5
Im

1.5

2

05l Sm(P) *hu‘,\,fl — £

(g™ ~g O Re

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
Re [Pl] = EL‘"II

& = cos(f) -0.5

|'_
@
-2

-1.5

FIGURE 2 — Le plan S - Figure résumé

6. En supposant que £ < 0.9.
7. Un échelon Ug(t) d’amplitude E est une fonction telle que Ug(t) = E pour t > 0 ou Ug(t) = 0 sinon.

3.3 Méthode pour une conception directe dans le plan S :

On cherchera donc a placer des poles en boucle fermée tels que défini a la figure 2. On va
chercher & faire en boucle fermée un deuxieme ordre approché qui aurait deux podles dominants tels
que (traduction des contraintes du cahier des charges) :

Pos <5< ¢>0.69 (13)

On choisit & = 0.707 = ? = cos(f) qui a le bon gout de respecter I'inéquation précédente et qui
correspond a un angle de 8 = 45 deg et qui de plus impose que les parties réelles et imaginaires
des podles sont égales.. Voyons la contrainte de rapidité maintenant :

3

T5 <055 — <0.5 (14)
wol

Or, —Re(P;) = &w par définition, voir la figure 2. On va se placer a la limite de cette frontiere, définie

par I'équation 14, car rappelons nous-le, créer des poéles rapide peut faire saturer la commande ce

que 'on doit a tout prix éviter. On a donc :

Re(p;) = —3/0.5 = —6 (15)
On va donc chercher a placer les deux podles en boucle fermée tels que :
p1=-6+6j p2=-6-06j (16)
A
Im

zone viable

Re

A\’

symétrique selon Re

FIGURE 3 — Résumé de la géométrie que doivent respecter les poles en boucle fermée. On notera
que la conception est symétrique suivant l'axe des réels car les poles sont dans notre cas toujours
complexes conjugués.

Pour réaliser ceci il suffit de concevoir un compensateur de la fagon suivante :

— On doit placer deux poles situés & —6 + 65, par exemple. ®

— Pour garantir la précision un intégrateur, rendant le systeme de classe 1, devra étre présent
au sein du compensateur.

— Un zéro indésirable sera introduit par la dans notre controéleur : nous négligerons dans une
premiére approche sa présence (voir section 3.5).

8. De maniere générale il s’agit de placer deux poles respectant la géométrie proposée a la figure 3.

A Kp.s+Ki K > |
: 3 Q tau.s
Reference Carrecteur Systeme Sortie
Ris) Cls) Fis) i)
Perturbaton
P(s)

FIGURE 4 — Architecture globale du systéme en continu. Nous noterons que tout se passera dans
I’Arduino excepté la fonction F(s)

3.4 Architecture globale du systeme

Nous alors pour cela concevoir un contréleur proportionnel-intégral afin de réguler au mieux
toutes les perturbations modélisées par l'entrée du signal P(s), la référence que l'on cherche &
poursuivre étant R(s) et la sortie étant Y'(s).

Fonction de transfert du systeme global en boucle fermée :

L Fe)C6) _ maU+)
His) = 1+ F(s)C(s) 1+%+1(Kp+%) (17)

Problématique : La question est... comment faire ? Comment régler le triplet K, K4, K; effica-
cement 7 Comment I'implémenter dans une carte Arduino en C++ 7

3.5 Calcul des coefficients du correcteur en temps continu C(s)

On va tout d’abord essayer de calculer les coefficients comme si le systeme était un deuxieme
ordre pur. On connait grace aux développements faits dans la section 2.2.2 les valeurs de K et 7.
De plus, on peut écrire :

K;
KKp(s+ Kp)
1+ KK, KK;
ey A

H(s) =

o (18)

Mais, grace aux développements de la section 3.3 on connait les poles que ’on veut, le dénominateur
de l'expression 18 doit étre égal a :

D(s)=(s—p1)(s—pa) = (s +6+6§)(s+ 6 —65) = s> + 125 4 72

Nous avons donc deux équations et deux inconnus en identifiant les coefficients au dénominateur...
formidable !

1+ KK, KK;
D(s) = s* + T Ps+ .
-
On fait 'identification en prenant les valeurs suivantes (comme dans mon exemple) K =40 7 =10.3
1+ KK, 127 -1
12=———F & K,=—+—~0.065
T P K
KK, 72
79 — ’@Ki:—KT ~ 0.54

T

10

Par ailleurs, le zéro vaut : z; = —K;/K, ~ —8.3, ce dernier va perturber le régime transitoire
quelque peu pour le dépassement. Il faudra vérifier que ce dernier ne soit pas déraisonnable.

3.6 Environnement MatLab

Vous pouvez utiliser le logiciel Simulink, dépendance de Matlab” en vue de vérifier la réponse
du systeme en continu. En fait, il faut regarder ce qu’il se passe en sortie du systéme pour bien
visualiser le tout. On regardera ce qui se passe en sortie du bloc C(s) également. Si vous avez fait
votre identification avec une source de 12 V il faudra veiller & ce que cette sortie ne s’approche pas
trop du voltage max. On risque d’obtenir des saturations sinon et cela est problématique pour la
dynamique du systeme.

On entrera les parametres directement dans 'invite de commande ou dans un script MATLAB
ce qui aura pour résultat le stockage dans l’espace de travail de ces variables. Par exemple :

K = 200;
tau = 0.3;
. etc

On pourra se servir de la figure 5 pour faire ceci. A noter que je donne un script résumé de la
conception complete complet sous Matlab a la section 4.2. Ce dernier n’utilise pas Simulink mais
rentre le modele analytique directement.

Note: On peut également utiliser la fonction MatLab pidtool (F) pour régler le gain du contréleur,
F étant ici la représentation de la fonction F'(s) en fonction de transfert sous MatLab (Transfer func-
tion) . On ne passe pas par les formules et le résultat est plus immédiat, par contre, cet outil n’existe
que dans MatLab depuis la version 2010b.

9. D’une maniere analogue, on peux utiliser le freeware Scilab avec son logiciel de simulation XCos avec la palette
(bibliotheque) CPGE, installable par 1'outil de gestion des modules ATOMS

11

4 Implémentation dans le systeme avec Arduino

Maintenant, passons des milieux continus aux milieux échantillonnés puisque le microcontroleur
Arduino en est un.

4.1 Eléments de théorie : Asservissements Numériques
4.1.1 Signal échantillonné

En asservissement numérique, on échantillonne les signaux avec une période d’échantillonnage
Te. Le signal est mesuré au départ de chaque période puis, la valeur est bloquée jusqu’a un nouvel

échantillonnage :
Ue(t) = Ue(nTe) t € [nTe, (n+ 1)T]

Cette méthode est appelée Bloqueur d’Ordre Zéro (ou BOZ)

Réponse a ’échelon

T
1 e o
T
0.8 - - .
(V]
© f——— B .
2 06 ——Signal continu |-
g Signal Discretisé
<
N S —]
0.2+ 1
O | | | |
0 1 2 3 4 5

Time (seconds)

FIGURE 5 — Signal continu et échantillonné par BOZ avec une période de 0.5s

4.1.2 Transformation en Z

Une transformée en Z d’un signal causal x(n) La transformée en Z est pour les systémes
échantillonnés ce que la transformée de Laplace est aux systémes continus.

Définition mathématique : Pour tout systeme causal, elle vaut :
Z(u(nT)) =U(z) = Y _u(nTe)xz" z€C (19)
neN

Nous nous focaliserons pas sur toutes ses propriétés mais seulement celles qui sont utiles dans notre
cas précis. Des livres et tout un pan de 'automatique traitant du sujet, je ne donne ici que des
éléments pour mieux comprendre.

12

Stabilité : Le critere de Cauchy sur les séries entieres s’applique ici. Un systeme est stable si et
seulement si ses poles (valeurs critiques) appartiennent au cercle unitaire. Autrement dit :

Ipil <1

Il faudra faire attention de vérifier que les pdles se trouvent bien dans cette région en concevant le
systeme sur MatLab. Si le systeme diverge, il faudra sans doute concevoir un systeme plus robuste
en continu, voire échantillonner plus pour s’approcher du systéme précédemment congu. Il faut étre
prudent, méme un premier ordre peut devenir instable si il est bouclé avec des gains inadéquats !

Théoréme de Shannon : Pour garantir une bonne période d’échantillonnage, par ce biais une
bonne stabilité en utilisant une approche tendant a ressembler a la conception en continu, on doit
respecter le critére suivant :

Les poles en boucle fermée en continu doivent appartenir a une bande B du plan S de Laplace

définie comme suit :

w w
Btq. Vp; € B, —?e <S(p) < ?e

Avec we, pulsation d’échantillonnage, relié & la période d’échantillonnage par la relation :

_27T
=7

We

Si on ne respecte pas ceci, des complications peuvent apparaitre :
— On peut sous-échantillonner le systéme et ainsi fausser completement le systéme en temps
discret. On perd de I'information si la fréquence d’échantillonnage ne vaut pas strictement
plus du double de la fréquence caractéristique la plus élevée du systéme :

Pas de pertes & fe > 2 x max(fpol)

— Le signal ainsi produit ne correspond pas a ce qui se passe réellement dans le systeme amenant
des erreurs de précisions ou pire : des instabilités.

13

Exemple : Un systeme F'(s) = SQ—IH oscillateur harmonique de fréquence fp,. = 1. On’échantillonne

aTle =1/f. =4 on obtient Fy(z) = % (ne respecte pas le théoreme de Shannon) et pour

fe =3 < T, ~ 0.33 on obtient Fy33(z) = W (respecte le théoreme) ceci nous donne la

figure 6 suivante pour la réponse a un échelon.

Step Response

AN /3 Ji —
1.8 / \ / \ — Signal continu

Te =4

o [I
of | \ \ / \\
Uf;/ . / \

; // \ / \/ \ /

54 . AF, . Al

Amplitude
[}

oo =

[———
J—

___‘_‘—\—_
P

Time (seconds)

FIGURE 6 — Exemple de discrétisation de signal continu a différentes périodes

Note : les périodes sont en adéquation ou non avec Shannon. La courbe pour T, = 4 met en
valeur un systéeme clairement sous-échantillonné : on est plus capable de voir la sinusoide a la
bonne fréquence.

Théoréme du retard : Soit un signal u(n), la transformée d’un signal retardé de k fois le temps

d’échantillonnage en Z vaut :
Z(u(n — kT,)) = 2% Z(u(n))

C’est pour cela que 'on utilise la transformée en Z, on peut déterminer une équation de récurrence
facilement a partir de cette derniere

14

4.2 Discrétisation de I’équation a I'aide de MATLAB

On devra ainsi utiliser la fonction c2d afin de transformer les valeurs de la fonction de transfert
continue du correcteur en fonction de transfert discrete en Z. On pourra utiliser le script MATLAB
suivant :

% Parametres du moteur
K = 40;
tau = 0.3;

%Coefficients du polynome des poles choisis D = (s-pl) (s-p2)

al = 12;
a0 = 72;
Kp = (al*tau - 1)/K;

Ki

(a0*tau) /K;

%Création des fonctions de transfert en continu

s = tf(’s?);

F = K/(s*tau + 1)
C = (s*Kp + Ki)/s
H = (C*F)/(1+CxF);

Rejet = -0.05%F/ (1+C*F);

%Simulation temporelle en continu du systeme en BF (poursuite et rejet)
step(H, Rejet); ’%0n poursuit un échelon unitaire et on rejette -5 de sa valeur

%discrétisation du contrdleur
Ts = 0.05;

C_e = c2d(C,Ts)

F_e = c2d(F,Ts);

% Vérification de la stabilité
figure

H_e = (C_exF_e)/(1+C_exF_e);
step(H_e)

1. On entre les bons parametres (et pas ceux de MON exemple) du systeme identifié a la
section 2.

2. On calcule les gains du controleur PI :
— On connait les pdles choisis (ici p; = —6 £ 6j) et donc les coefficients du polynéme
caractéristique (dénominateur de la fonction de transfert en boucle fermée)
— On peut donc, connaissant le systéme en boucle fermée, déterminer (k;, k,) facilement
pour placer les poles au bon endroit (identification sur les coefficients du dénominateur
de la fonction de transfert).

15

3. On calcule les fonctions de transferts en continu du systéme (correcteur et systéme phy-

sique 19).

— La fonction Matlab tf () (Transfer Function) permet de définir le symbole s comme étant
la variable de Laplace.

— Ensuite, on construit a ’aide de fractions rationnelles les différentes fonctions de transfert
dont on a besoin.

— On testera avec la fonction step() les réponses a des échelons de référence unitaire.

— On testera également le rejet d’une perturbation de cinq pourcent par le PI (frottements
arrivant d’un coup sur le robot, par exemple : traversée brutale d’une bande rugueuse).

4. On a choisi comme temps d’échantillonnage ! T, = T, = 50ms (ajustable) car on estime
la mesure de vitesse suffisamment précise sur ce laps de temps. Mais cela dépend de votre
capteur, si votre acquisition a la section 2 était trop bruité, il faudrait ’augmenter mais gare
au sous-échantillonnage car il peut vous jouer des tours en terme de robustesse. Il faudra, le
cas échéant alors modifier les poles pour avoir un systeme plus lent mais plus robuste. On
congoit le systéme en discret car notre mesure en vitesse est discréete, une nouvelle
mesure n’est disponible que toutes les 50ms, c’est le coeur du probleme.

5. On discrétise le systeme en utilisant la fonction c2d() (continuous to discrete) en renseignant
le temps d’échantillonnage 2. La transformée en Z de la fonction devrait s’afficher sur I'invite
de commande Matlab (absence de point virgule en Matlab impliquant affichage).

6. Une derniere simulation est effectuée, on trace la réponse indicielle de la fonction de transfert
discrétisée en boucle fermée pour s’assurer qu’elle est stable, si elle ne diverge pas, on peut
donc garder ces valeurs. Sinon, il faut soit augmenter T, soit trouver des poles plus robustes
en continu.

Note importante : Pour avoir de l'aide sur les syntaxes des fonctions Matlab il suffit de taper sur
I'invite de commande help maFonction.

En faisant simplement tourner le script précédent, on obtient :

Sur l’invite de commande

Continuous-time transfer function.

10. Non nécessaire pour le systeme physique mais je préconise une simulation de son comportement pour vérifier
sa stabilité. Donc il y a besoin de connaitre F'(s) pour calculer la fonction du systéme en boucle fermée.

11. Sampling Time en anglais.

12. Rappel : une transformée en Z d’'un méme systeme continu est en général différente avec deux temps
d’échantillonnage différents.

16

0.065 s + 0.54

Sample time: 0.05 seconds
Discrete-time transfer function.

Ceci signifie que la fonction de transfert de mon correcteur en Z, avec T, = 50ms vaut Ce(z) =
0.0652—0.038

z—1 .

Simulations du systéme en boucle fermée : elles sont présentes aux figures 7 et 8.

4.3 Création de I'équation aux différences du contrdleur C(z)

L’étape est toute simple, nous disposons déja de la transformée en Z. Il faut procéder ainsi :

1. Normaliser par z~%, k étant le degré le plus élevé du polynéme du dénominateur, de maniere
a n’obtenir que des z* avec ¢ des entiers négatifs.

2. Séparer entrée et sortie.
3. Transformer en inverse en appliquant le théoreme du retard.
4. Isoler U(n)

Exemple : Pour notre systeme, on a :

U(z) _ 0.065z —0.038 0.065 — 0.03827!
E(z) z—1 B 1— 21

On a donc ’équation :
U(z)(1 -z = BE(2)(0.065 — 0.038271)

Le théoréme du retard nous donne (la transformée en Z étant linéaire) :
U(n)—U(n —Te) =0.066E(n) — 0.038E(n — Te)

Une équation de récurrence peut donc étre trouvée en notant les signaux comme suit : X,,_p =
X(n—kT)
Up =Upn—1+0.065E, —0.038E,,_;

4.4 Implémentation sous Arduino

Pour implémenter cette fonction, la difficulté réside dans le fait de I'implémenter sur une sortie
PWM de I’Arduino (voir Pexplication plus complete sur http://wiki.centrale-marseille.fr/fablab).
En effet, le PWM (Power Wave Modulation) délivre des carrés entre 0 et 5V a une fréquence
d’environ 490H z.

17

http://wiki.centrale-marseille.fr

Step Response
1.2 T T . . .

Amplitude

o 0.2 0.4 0.6 0.8 1 1.2
Time (seconds)

FIGURE 7 — Réponse continue
Note : Suivi en bleu, rejet d’un échelon de 5 pour cent en orange. Les performances sont celles
fixées par le placement des poles.

Step Response

1.4

1.2

[
oo

Amplitude
o
[=}]

(=]
=%

0.2r

0 0.2 0.4 0.6 0.8 1 1.2
Time (seconds)

FIGURE 8 — Réponse discrétisée.

Note : Le systéme converge et a le bon golt de conserver les performances désirées en suivi.

18

En Arduino, pour faire ceci, on a la fonction analogWrite(pin,value), le premier argument
pin est un entier représentant la pin a utiliser. Pour une Arduino UNO, les sorties équipées du
PWM a 490H z sont les suivantes : 3, 5, 6, 9, 10, et 11. On notera que les pins 5 et 6 supportent
également le PWM mais a 980H z, on utilisera ces dernieres. Pour les autres cartes, vérifiez avec la
datasheet sur le site officiel d’Arduino pour savoir quelles pin prendre.

Tension moyenne du PWM : Le deuxieme argument, value est codé sur 8 bits et est directe-
ment relié a la tension de moyenne de sortie de ’Arduino. On a fait 'identification du moteur avec
comme entrée directement la sortie de ’arduino donc :

value

u = 9% < value = 255 X u

En supposant que value est entre 0 et 255 si ce n’est pas le cas, il faut faire saturer value
sinon on risque d’envoyer une tension erronée. Exemple 256 = 02100 sera interprété comme
0200 = 0 et donnera une tension de OV en sortie!

19

http://arduino.cc

~

13

19

21

23

29

31

39

43

Code Arduino : On reprend la routine précédente plus quelques modifications :

const int pin_acquisition = 12;

const int pin_moteur = 5; // on branche le moteur sur la PIN 5
static int temps_absolu;

const int periode = 50; // 50 ms = Te (par exemple)

const int a = 120;

float v; //vitesse
float e; float el= 0; float u=0; float ul=0;
// e(n), e(n—=1), u(n), u(n-1)

float cons = 42.314; // consigne (par exemple)

void setup (){
Serial.begin (9600);
pinMode (pin_acquisition ,INPUT) ;
pinMode (pin_moteur ,OUTPUT) ;

}

float mesureVitesse () {
digitalWrite (pin.moteur ,HIGH) ;
//la PIN 3 est a relier a 1’entree du montage amplificateur
//(pont en H) alimentant le moteur
temps_absolu = millis(); // le temps absolu au debut de 1’acquisition
int ticks=0;
boolean b;
while (millis ()—temps_absolu<periode){ //on mesure les ticks pendant T
b = digitalRead (pin_acquisition);
delayMicroseconds (20) ;
if (b=0 && digitalRead (pin_acquisition)=1){ // detection d’un front montant
ticks++;
}
}
float vitesse = (float) ticks+6000/(axperiode); // conversion de la vitesse
return vitesse;
}
void correction (float vitesse, float consigne){
float e = vitesse — consigne; //comparateur
u=ul + 0.065%xe — 0.038xel; //equation de recurrence
int value = (int)ux255; //conversion sur 8 bits
value = constrain (value,0,255); //saturation si on sort des 8 bits
digitalWrite (pin_.moteur , value) ;
ul = u; el = e; // memorisation des anciennes valeurs

}

void loop () {
v = mesureVitesse () ;

// Serial.println(v); // affichage de la vitesse toutes les 50 ms

// Serial.print(millis()); // affichage du temps en ms (debug et test)
correction(v,cons); // application de votre controleur (temps d execution neglige)

Pour deux moteurs sur la méme carte : Recommencez ’étude pour le deuxiéme moteur et implémentez
la deuxieéme acquisition de vitesse en méme temps que la premiere, doublez vos variables, vous pou-
vez faire ’hypotheése que votre processeur sera assez rapide pour gérer ces deux choses a la fois...

20

5 Références

— KILIDJIAN, A., Cours d’asservissements numériques, option de 2A a4 'ECM, 2015.

— GUCHUAN, Z., Cours d’asservissements numériques, Polytechnique Montréal, ELE 8200,
2017.

— MoubpacaLya, K.M., Digital Control, éd Willey, 2007.

— Jazzar, C., Cours de C/C++, option de 2A a 'ECM, 2015.

— http://wiki.centrale-marseille.fr/fablab, CANO, J. , SALLES, P.
Wiki du FabLab Marseille, page de la théorie Arduino, 2014, rév 2017.

— http://arduino.cc, Site officiel d’Arduino, rév 2017.

21

http://wiki.centrale-marseille.fr/fablab
http://arduino.cc

	Avant-propos
	Mot de l'auteur
	Objectifs du mémo

	Modélisation d'un moteur à courant continu
	Modèle du moteur
	Équations physiques temporelles
	Équations physiques dans le domaine de Laplace

	Modélisez votre moteur grâce à une fonction de transfert
	Mesurer la vitesse ?
	Identification des paramètres

	Conception du contrôleur
	Stratégie employée
	Rappels : Théorie de la conception dans le plan S
	Notions de pôles et de zéros
	Notations employées
	Propriétés du système en fonction des pôles
	Une figure résumé

	Méthode pour une conception directe dans le plan S :
	Architecture globale du système
	Calcul des coefficients du correcteur en temps continu C(s)
	Environnement MatLab

	Implémentation dans le système avec Arduino
	Éléments de théorie : Asservissements Numériques
	Signal échantillonné
	Transformation en Z
	Quelques subtilités par rapport aux asservissements continus classiques

	Discrétisation de l'équation à l'aide de MATLAB
	Code MATLAB
	Explications à propos du précédent code
	Résultats obtenus avec mes valeurs :

	Création de l'équation aux différences du contrôleur C(z)
	Implémentation sous Arduino

	Références

