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Approche descendante

Pour aller d’un point A à un point B, que faut-il faire ?

1 Savoir où on se trouve (navigation, autre formation) ;

2 Calculer une trajectoire A1,A2...AN−1,B en prenant compte de son
environnement ;

3 Parcourir les segments Ai ,Ai+1 efficacement ;

4 Savoir comment on se déplace, ie la cinématique du robot ;

5 Avoir une vitesse de déplacement asservie (déjà fait, les roues le
sont !).
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Présentation du robot différentiel

L

y⃗

x⃗

e⃗x

e⃗x

e⃗y

L/2

θ

M(x,y)
G D

Figure – Schéma du robot, vue de dessus
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Contrainte non-holonome

États d’intérêt du robot

Comment placer un robot dans un plan ?

Position x , y ;

Angle (ou attitude) θ.

Hypothèse de contraine non-holonome

Le robot roule sans glisser :
v⃗ .e⃗y = 0

Conséquence

On perd un degré de liberté pour la cinématique.
Seule la vitesse de translation suivant e⃗x est pertinente. On parlera de
vitesse tangentielle V .
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Cinématique d’un montage différentiel I

Modèle cinématique holonome

On projette la vitesse V e⃗x dans le repère général, et on définit la vitesse de
rotation Ω : 

ẋ = V cos θ

ẏ = V sin θ

θ̇ = Ω

Justin Cano (ONERA) Formation E-Gab 14 mars 2025 8 / 28



Cinématique d’un montage différentiel II

Question : que valent les vitesses au niveau des roues ?

V⃗g = V⃗M + Ω⃗× G⃗M = V e⃗x +Ωe⃗z ×
(
−L

2
e⃗y

)
=

(
V +

ΩL

2

)
e⃗x = ωgRg e⃗x

V⃗d = V⃗M + Ω⃗× D⃗M = V e⃗x +Ωe⃗z ×
(
+
L

2
e⃗y

)
=

(
V − ΩL

2

)
e⃗x = ωdRd e⃗x

Ainsi on peut inverser relation et trouver la vitesse tangentielle en fonction
des vitesses de rotation des roues :

V =
ωgRg + ωdRd

2
,

et pour la vitesse de rotation, nous avons :

Ω =
ωgRg − ωdRd

L
.

On peut relier vitesse des roues et états cinématique : étape 4
complétée !
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Présentation du contrôleur point à point I

L’idée est ici de nous ramener dans un cas polaire 1 . On peut définir la
distance euclidienne au point désiré pd = [xd , yd ]

⊤ :

d =
√
(xd − x)2 + (yd − y)2

L’angle distant entre ≪le cap≫ du robot et le point désiré :

α = atan2(yd − y , xd − x)− θ

L’angle entre ≪le cap≫ et le vecteur x⃗ :

β = −θ − α = −atan2(yd − y , xd − x)
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Présentation du contrôleur point à point II

•

•

x⃗

y⃗

e⃗x

d

(xd , yd)

atan2(yd − y , xd − x)θ

α

β

On pourra donc boucler (on enverra ces commandes aux roues avec les
relations cinématiques trouvées précédemment) le système avec trois gains
kd , kα, kβ : {

V = kdd

Ω = kαα+ kββ

1. Ce contrôleur provient d’un article d’Astolfi et al. de 1999, voir le mémo compagnon.
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Quelques propriétés

Ce contrôleur est non linéaire ;

Une analyse de stabilité locale (linéarisation) donne les conditions
nécessaires de suivantes pour synthétiser un contrôleur stable :

kd > 0,

kβ < 0,

kα > kβ;

Ce dernier ne fait pas (encore) le contrôle du cap, on va rajouter un
petit quelque chose...
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Correcteur pour le cap

Une fois l’objectif atteint, on fixe le cap avec la simple loi linéaire :{
V = 0

Ω = kp(θ − θd)

ce contrôleur est stable pour kp > 0 et non excessif (qui ne fait pas saturer
les moteurs). Rappelons que l’erreur en régime permanent est une fonction
décroissante de kp : un compromis doit s’opérer.
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Conditions d’arrêt

Arrêt du correcteur non linéaire

Si (x − xd)
2 + (y − yd)

2 < ρ2 avec ρ un seuil de distance donné, alors on
enclenche la correction de cap.

Arrêt du correcteur de cap

Si de plus (θ − θD)
2 < γ2 avec α un seuil d’angle donné, alors on

considère l’objectif atteint ⇒ V = 0 et Ω = 0.

L’objectif 3 est complété : on est capable de parcourir un segment.
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Code-compagnon

Regardons-le et exécutons un exemple.
Un schèma-blocs Simulink, dans le répertoire controleur pt a ptmontre
la logique d’asservissement à implémenter.
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Calcul de trajectoires

On cherche à trouver une suite de points dans l’espace d’état :

X 1
d ,X

2
d , ...,X

N−1
d

avec Xd = [xd , yd , θd ]
⊤, on peut laisser libre l’orientation toutefois.

Notre premier souci sera d’éviter les obstacles.

Stratégie

1 Recensement des obstacles ;

2 Dilatation de ces derniers d’une zone de sécurité autour du centre de
masse ;

3 Méthode des potentiels ;

4 Lissage des courbes.
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Dilatation de la carte d’obstacles I

Soit un espace de travail connu :

Robot

Figure – Environnement connu.
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Dilatation de la carte d’obstacles II

En supposant que le robot soit inscrit dans un cercle de rayon R, nous
dilatons les obstacles de ce rayon.
⇒ le robot en devient donc un point aux yeux des ”obstacles”.

Zone d’évolution du robot (déplacements autorisés)

Zone de collision (dillatation d’un rayon R)

Robot

Figure – Environnement dilaté.
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Dilatation de la carte d’obstacles III

On peut donc en extraire la carte binaire d’occupation des obstacles : cette
carte doit être vue comme une grille discrète.

Zone d’évolution du robot (déplacements autorisés)

Obstacles (zone interdite)

Figure – Carte d’occupation obtenue après dilatation.
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Méthode des potentiels I

Illustration : le robot et les obstacles se repoussent, l’objectif attire le robot.

Trajectoire par descente du gradient des potentiels

Objectif
charge +

Robot mobile
charge -
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Méthode des potentiels II

Ainsi, on peut définir les potentiels fictifs :

Potentiel attracteur

On utilisera la forme quadratique suivante autour du point objectif final
xf , yf .

Ua(x , y) =
1

2
λ[(x − xf )

2 + (y − yf )
2]

λ est un paramètre servant à ajuster la pondération du potentiel
attracteur, il faut que ce dernier ait une influence significative sur entre
x0, y0 et xf , yf . Il est nul sur le point objectif et crôıt en d(x , y)2 d’autant
plus que l’on s’éloigne dudit point. Son gradient vaut :

∇Ua = ∇UATR = λ

[
x − xf
y − yf

]
,

et a le bon goût de rester continu.
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Méthode des potentiels III

Potentiel répulsif

Ue(x , y) =

{
µ
2 (

1
d(x ,y) −

1
ρ0
)2 si (x − xe)

2 + (y − ye)
2 = d2(x , y) < ρ20

0 sinon

Le gradient vaut :

∇e(x , y) =


−µ( 1

d(x,y)
− 1

ρ0
)

d3(x ,y)

[
(x − xe)

(y − ye)

]
si d(x , y) < ρ0

0 sinon

Cette fonction quadratique ne comporte pas de discontinuités pour son
gradient, ce qui est un atout pour ne pas avoir numériquement des
changements brusques.
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Descente de gradient I

Le schéma de descente de gradient peut être donné comme suit :[
xi+1

yi+1

]
=

[
xi
yi

]
− αi

[
∇x

U(xi , yi )
∇y

U(xi , yi )

]
on trouvera le minimum global si la somme des potentiel est convexe. Com-
prendre l’objectif final.
Mais plusieurs obstacles se dressent devant nous :

La carte des obstacles est discrète, une case représente n cm par n
cm, le potentiel est le même dans chacune des cases ;

Les valeurs des gradients sont fort différentes d’un point à un autre,
avec un mauvais pas αi on peut se retrouver hors des limites du
terrain !
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Descente de gradient II

Solution :

Considérer un gradient normalisé qui donne un déplacement constant
à chaque itération ;

Un pas constant α > 1 de valeur modérée (on a choisi) α =
√
2 dans

nos simulations ;

Considérer la partie entière (notée E [•]) de ce pas normalisé avec
xi , yi entiers représentant les coordonnée de la grille.

[
xi+1

yi+1

]
=

[
xi
yi

]
− E

 α√
[∇x

U(xi , yi )]
2 + [∇y

U(xi , yi )]
2

[
∇x

U(xi , yi )
∇y

U(xi , yi )

]
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Lissage des courbes

On peut moyenner les points trouvés par la descente de gradient pour rendre
la trajectoire plus lisse :

Figure – Exemple de descente de gradient lissée.
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Code-compagnon

Regardons-le et exécutons un exemple.
Le script Matlab planification.m dans le répertoire chemins montre
l’optimisation du gradient.
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