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Contenu de la section

@ Stratégie d'explication
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Approche descendante

Pour aller d’'un point A a un point B, que faut-il faire?
@ Savoir ol on se trouve (navigation, autre formation);

@ Calculer une trajectoire A1, As...An_1, B en prenant compte de son
environnement ;

Parcourir les segments A;, A; 1 efficacement;

Savoir comment on se déplace, ie la cinématique du robot;

Avoir une vitesse de déplacement asservie (déja fait, les roues le
sont!).
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Contenu de la section

@ Cinématique du robot
@ Présentation du robot différentiel
@ Hypothése non-holonome
@ Cinématique d'un montage différentiel
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Présentation du robot différentiel

L/2

Figure — Schéma du robot, vue de dessus
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Contrainte non-holonome

Etats d'intérét du robot
Comment placer un robot dans un plan?

@ Position x, y;
@ Angle (ou attitude) 6.
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Contrainte non-holonome

Etats d'intérét du robot
Comment placer un robot dans un plan?

@ Position x, y;
@ Angle (ou attitude) 6.

Hypotheése de contraine non-holonome

Le robot roule sans glisser :

<
D,

Il

o
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Contrainte non-holonome

Etats d'intérét du robot
Comment placer un robot dans un plan?

@ Position x, y;
@ Angle (ou attitude) 6.

Hypotheése de contraine non-holonome

Le robot roule sans glisser :

v.e, =0

Conséquence

On perd un degré de liberté pour la cinématique.
Seule la vitesse de translation suivant €y est pertinente. On parlera de
vitesse tangentielle V.
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Cinématique d'un montage différentiel |

Modele cinématique holonome

On projette la vitesse Véx dans le repere général, et on définit la vitesse de
rotation €2 :

x = V cosf
y = Vsinf
6=0Q
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Cinématique d'un montage différentiel I

Question : que valent les vitesses au niveau des roues ?

- . = L QL
Ve =Vu+ Q2 x GM = Ve + Qe x (—ze}) = <V—i— 2) éx = wgRgex

5 o o - L QL
Vo=V +Qx DM = Ve, + Qe x <+2e}> = <V — 2) éx = wgRyéx

Ainsi on peut inverser relation et trouver la vitesse tangentielle en fonction
des vitesses de rotation des roues :

ngg + wde
2 )
et pour la vitesse de rotation, nous avons :

V =

. ngg — wde

= i .

On peut relier vitesse des roues et états cinématique : étape 4
complétée!
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Contenu de la section

© Contrdleur point a point
@ Présentation du contrbleur point a point
@ Propriétés du contrbleur
@ Correcteur pour le cap
@ Quand atteint on le point A; et I'angle 047
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Présentation du contréleur point a point |

L'idée est ici de nous ramener dans un cas polaire! . On peut définir la
distance euclidienne au point désiré pg = [xq, y4] "

d= \/ (xd = x)? + (ya — y)?
L'angle distant entre <le cap> du robot et le point désiré :
a = atan2(yy — y,xqg —x) — 0
L'angle entre <le cap> et le vecteur X :

f=—-0—a=—atan2(yy — y,Xq — X)
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Présentation du contréleur point a point Il

€x

Xd }/d)
9\ \atanQ (Yd — ¥, Xd — X)

On pourra donc boucler (on enverra ces commandes aux roues avec les
relations cinématiques trouvées précédemment) le systéme avec trois gains
kd, ko, ks :

V = kqd

Q = koo + kg3

1. Ce contrdleur provient d'un article d’Astolfi et al. de 1999, voir le mémo compagnon.
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Quelques propriétés

@ Ce controleur est non linéaire:

@ Une analyse de stabilité locale (linéarisation) donne les conditions
nécessaires de suivantes pour synthétiser un controleur stable :

kg > 0,
kﬁ <0,
ka > kﬂ;

o Ce dernier ne fait pas (encore) le contrdle du cap, on va rajouter un
petit quelque chose...
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Correcteur pour le cap

Une fois I'objectif atteint, on fixe le cap avec la simple loi linéaire :

V=0
Q = ky(0 — 04)

ce contrdleur est stable pour k, > 0 et non excessif (qui ne fait pas saturer
les moteurs). Rappelons que I'erreur en régime permanent est une fonction
décroissante de k, : un compromis doit s'opérer.
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Conditions d’arrét

Arrét du correcteur non linéaire

Si (x — x4)%2 + (v — yd)? < p? avec p un seuil de distance donné, alors on
enclenche la correction de cap.

Arrét du correcteur de cap

Si de plus (6 — 6p)? < 72 avec a un seuil d’angle donné, alors on
considere I'objectif atteint = V =0et Q = 0.

L’objectif 3 est complété : on est capable de parcourir un segment.
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Regardons-le et exécutons un exemple.
Un schema-blocs Simulink, dans le répertoire controleur_pt_a_pt montre
la logique d'asservissement a implémenter.
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Contenu de la section

@ Calcul de trajectoires
@ Stratégie
@ Dilatation de la carte d'obstacles
@ Planification de trajectoire par descente de gradient
o Lissage des courbes
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Calcul de trajectoires

On cherche a trouver une suite de points dans |'espace d’état :
1 y2 N—1
Xy X5 Xy

avec Xg = [x4,Yd,04]", on peut laisser libre I'orientation toutefois.
Notre premier souci sera d'éviter les obstacles.

Stratégie

@ Recensement des obstacles;

@ Dilatation de ces derniers d'une zone de sécurité autour du centre de
masse ;

© Meéthode des potentiels;

@ Lissage des courbes.
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Dilatation de la carte d'obstacles |

Soit un espace de travail connu :

‘

Figure — Environnement connu.
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Dilatation de la carte d'obstacles I

En supposant que le robot soit inscrit dans un cercle de rayon R, nous
dilatons les obstacles de ce rayon.
= le robot en devient donc un point aux yeux des "obstacles”.

. -
.

A e R e R L R e e e e
S

. Zone d'évolution du robot (déplacements autorisés)

Zone de collision (dillatation d'un rayon R) : [

o
3
o

Figure — Environnement dilaté.
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Dilatation de la carte d'obstacles IlI

On peut donc en extraire la carte binaire d'occupation des obstacles : cette
carte doit étre vue comme une grille discrete.

Zone d'évolution du robot (déplacements autorisés)

Figure — Carte d’occupation obtenue apres dilatation.
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Méthode des potentiels |

[llustration : le robot et les obstacles se repoussent, |'objectif attire le robot.

Robot mobile
charge -

Trajectoire par descente du gradient des poteqtlels
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Méthode des potentiels Il

Ainsi, on peut définir les potentiels fictifs :

Potentiel attracteur

On utilisera la forme quadratique suivante autour du point objectif final
Xfs Yf-

Us(x,y) = 5 \x = 50 + (v = Y]

A est un parametre servant a ajuster la pondération du potentiel
attracteur, il faut que ce dernier ait une influence significative sur entre
X0, Yo et x¢, yr. Il est nul sur le point objectif et croit en d(x, y)? d'autant
plus que I'on s'éloigne dudit point. Son gradient vaut :

X — Xf
VU, =VUarr = A ,
a ATR |:y—)/f:|

et a le bon golit de rester continu.
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Méthode des potentiels IlI

5oy — ) st (x —xe)? — Ye)? = d? 2
Ue(x,y):{z(d(x’y) 2R e (x:¥) < 1o

0 sinon

Le gradient vaut :

*ﬂ(d(:y)*%) (X_Xe) 5
— si d x,y) <
Ve(x,y) = S (v — ve) Goy) <o

0 sinon

Cette fonction quadratique ne comporte pas de discontinuités pour son
gradient, ce qui est un atout pour ne pas avoir numériquement des
changements brusques.

Potentiel répulsif
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Descente de gradient |

Le schéma de descente de gradient peut étre donné comme suit :

Xiv1|  [Xi Vi(xis yi)
. =1, T VY (x:. vi
Yi+1 Vi U(X:,y:)
on trouvera le minimum global si la somme des potentiel est convexe. Com-

prendre |'objectif final.
Mais plusieurs obstacles se dressent devant nous :

@ La carte des obstacles est discrete, une case représente n cm par n
cm, le potentiel est le méme dans chacune des cases;

o Les valeurs des gradients sont fort différentes d'un point a un autre,
avec un mauvais pas «; on peut se retrouver hors des limites du
terrain !
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Descente de gradient I

Solution :

@ Considérer un gradient normalisé qui donne un déplacement constant
a chaque itération;

o Un pas constant o > 1 de valeur modérée (on a choisi) o = /2 dans
nos simulations;

o Considérer la partie entiere (notée £[e]) de ce pas normalisé avec
X;j, yj entiers représentant les coordonnée de la grille.

(0}

bl =] -2 VTl )P + [V (501 Ll
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Lissage des courbes

On peut moyenner les points trouvés par la descente de gradient pour rendre

la trajectoire plus lisse :
Carte de potentiel

T T T T T
Descente du gradient de potentiel 600
Trajectoire lissee
Position initiale

5F Position finale T

10 -

15

20 -

5 E L L I I I L

5 10 15 20 25 30

Figure — Exemple de descente de gradient lissée.
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Regardons-le et exécutons un exemple.
Le script Matlab planification.m dans le répertoire chemins montre
['optimisation du gradient.
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