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Qui suis-je ?

Une personne âgée.

Figure – Il y a bien longtemps quand je ne portais ni barbe ni dentier.

Ancien membre de E-Gab 2015-2016 1, ex-fablabiste et CIA.

Centralien (thx captain obvious), DD Polytechnique Montréal

Actuellement en cotutelle Poly Mtl - ISAE/Supaéro

Sujet : localisation et déploiement de robots.

Mais aussi chargé de laboratoire en Automatique à mes heures
perdues.

1. Du temps où E-Gab était une monarchie.
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Petit tour de table (ou d’écran)

Presentez vous 2 à votre tour !

2. en 140 caractères.
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Principe général

+

–

C (s) F (s) Y (s)R(s)
ε(s) U(s)

P(s)

+

+

Figure – Schéma-blocs générique d’un système linéaire SISO perturbé à retour
unitaire.

Remarque : Je note s la transformée de Laplace (convention R−FRANCE)
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Qu’est-ce que la transformée de Laplace ?

Mathématiquement, une transformée de Laplace d’une fonction est définie
de la façon suivante :

L(f (t)) := F (s) =

∫ ∞
t=0

f (t)e−stdt (1)

Où :

s est une variable complexe dite variable de Laplace. On
décompose s de la façon suivante :

s = σ + jω, σ, ω ∈ R j ∈ C, j2 = −1

f est une fonction temporelle causale.

C’est une opération qui s’applique sur toute une fonction f : R+ → R
afin de générer une autre fonction, appelée transformée F : C→ C.
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Un exemple ?

Figure – Circuit RC série

UG (t) = RI (t) + UC (t) = RC
dUc

dt
+ UC

On va considérer nos variables d’entrée et de sortie du système :

Entrée : Tension aux bornes du générateur u(t) = UG (t).

Sortie : Tension aux bornes du condensateur y(t) = UC (t).

On transforme l’équation différentielle dans le domaine Laplace dans les conditions
d’Heavyside et on obtient :

U(s) = (RCs + 1)Y (s)⇔ F (s) =
Y (s)

E (s)
=

1

1 + RCs
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Laplace, acte I

H(s) =
N(s)

D(s)

Où N,D sont des polynômes en s.

Les pôles pi sont les valeurs de s pour lesquelles D(s) = 0.

Les zéros zi sont les valeurs de s pour lesquelles N(s) = 0.

Re(pi ) < 0⇔ STABILITE
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Laplace, acte II

Re

Im

O

p

p∗

θ

jω0

√
1− ξ2

−jω0

√
1− ξ2

−jω0ξ

ω0

H(s) = K

1+ 2ξ
ω0

s+ s2

ω2
0

Figure – Le plan de Laplace, système d’ordre deux.
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Laplace, acte III

H(s) =
K

1 + 2ξ
ω0
s + s2

ω2
0

Oscillations :
cos(θ) = ξ (2)

De plus,on a la relation suivante entre le facteur d’amortissement ξ et
le pourcentage de dépassement maximum POS .

ξ = ln

(
100

POS

)
× 1√

π2 + ln2( 100
POS

)
(3)

Rapidité :
La rapidité d’un système est donnée par la relation approximative
suivante 3 :

T5 ≈
3

ω0ξ
(4)

3. En supposant que ξ < 0.9.
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Échantillonnage de signaux

Figure – Signal bloqué à l’ordre zéro.
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Théorème de Shannon

Pas de pertes⇔ fe > 2×max(fpole)

Figure – Illustration de l’importance de l’échantillonnage.
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Transformée en Z (Laplace discrète)

Pour tout système causal, elle vaut :

Z (u(nTe)) = U(z) =
∑
n∈N

u(nTe)× z−n z ∈ C (5)

Calcul sous Matlab : utiliser la fonction c2d (continuous to discrete)
que demande la période d’échantillonnage en plus de la fonction
continue du système à discrétiser.
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Plan Z et plan S (Laplace)

Figure – Équivalence entre Laplace et Z.

Stabilité : Le critère de Cauchy sur les séries entières s’applique ici.
Un système est stable si et seulement si ses pôles (valeurs critiques)
appartiennent au cercle unitaire. Autrement dit :

|pi | < 1
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Théorème du retard

Soit un signal u(n), la transformée d’un signal retardé de k fois le temps
d’échantillonnage en Z vaut :

Z (u(n − kTe)) = z−kZ (u(n))

C’est pour cela que l’on utilise la transformée en Z, on peut déterminer une
équation de récurrence facilement à partir de cette dernière
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Modélisation du moteur I

ω(t) vitesse de sortie du moteur

C (t) couple fourni par le moteur

ı(t) intensité traversant le bobinage du moteur

L,R, e Inductance, Résistance et force contre-électromotrice du
moteur

J, f Moment d’inertie et coefficient de frottement sec du moteur

Équations dynamiques :

1 u(t) = L di
dt + Ri(t) + e, τe = L

R Équation électrique

2 e(t) = Φω(t) et C (t) = Φi(t) Équations magnétique

3 J dω
dt = −f ω(t) + C (t), τm = J

f Équation mécanique
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Modélisation du moteur II

U(s) = (τes + 1)RI (s) + e = (τes + 1)
R

Φ
C (s) + ΦΩ(s)

= (τes + 1)(τms + 1)
Rf

Φ
Ω(s) + ΦΩ(s). (6)

⇔ Ω(s)

U(s)
=

1

(τes + 1)(τms + 1)Rf
Φ + Φ

=
Φ
Rf

τeτms2 + (τe + τm)s + Φ2

Rf

. (7)

En approximant τe << 1, on obtient :

F (s) ≈ Ω(s)

U(s)
=

K

sτ + 1
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Contrôleur PI ?

+

–
Kp + Ki

s
F (s) Y (s)R(s)

ε(s) U(s)

P(s)

+

–

u(t) = Ki

∫
ε(τ)dτ + Kpε(t) où ε(t) = Ωdesiree − Ωmesuree = R(t)− Y (t)

En Laplace :

C (s) =
U(s)

ε(s)
=

Ki

s
+ Kp

Avantages : Erreurs nulles en rejet de perturbation et suivi pour des
échelons (constantes).

Inconvénients : Le système peut être lent ou instable... attention au
choix des coeffs ! Introduction d’un zéro.
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Calcul de la fonction de transfert globale

Figure – Système global.

Ce dernier donne :

H(s) =
KKp(s + Ki

Kp
)

s2 +
1+KKp

τ s + KKi
τ

(8)

Tiens, deux pôles dépendant de deux gains... intéressant !
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Choix des pôles

Re

Im

Zone stable Zone instable

Zone stable
mais trop lente

−3/T5Zone

viable
θ

Zone trop
oscillante

Zone trop
oscillante

Figure – Illustration.

On se fixe des performances :

T5% ≤ 0.5 s & POS ≤ 5⇔ ξ ≥ 0.69 (9)

Les pôles p1,2 = −6± 6j conviennent pour respecter ce cahier des charges.
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Calcul des gains

Que vaut le dénominateur de la fonction de transfert que l’on veut ?

D(s) = (s − p1)(s − p2) = (s + 6 + 6j)(s + 6− 6j) = s2 + 12s + 72

On suppose K = 40 et τ = 0.3 s, ces coefficients doivent être identifiés
pour chaque moteur.
Deux relations avec les deux gains pour deux coefficients polynomiaux :

12 =
1 + KKp

τ
⇔ Kp =

12τ − 1

K
≈ 0.065

72 =
KKi

τ
⇔ Ki =

72τ

K
≈ 0.54

... qui donne un zéro qui n’est pas négligeable −Ki/Kp ≈ −8.3, si on
a un dépassement différent, ce sera de sa faute. Mais est-ce dramatique ?
Suspense.
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Simulation en continu

Figure – Test en boucle fermée du système corrigé sur Matlab

Rouge : rejet de perturbation. Bleu : Poursuite d’un échelon unitaire.
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Exemple de discrétisation sous Matlab

En utilisant c2d (voir script), on obtient les équations en Z suivantes :
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Obtention de l’équation de récurrence :

Ce(z) =
U(z)

E (z)
=

0.065z − 0.038

z − 1
=

0.065− 0.038z−1

1− z−1

On a donc l’équation :

U(z)(1− z−1) = E (z)(0.065− 0.038z−1)

Le théorème du retard nous donne (la transformée en Z étant linéaire) :

U(n)− U(n − Te) = 0.065E (n)− 0.038E (n − Te)

Une équation de récurrence peut donc être trouvée en notant les signaux
comme suit : Xn−k = X (n − kTe)

Un = Un−1 + 0.065En − 0.038En−1

Cette équation est implémentable en C (ou autre) ! !
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Exemple sur Matlab

À vos claviers.
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